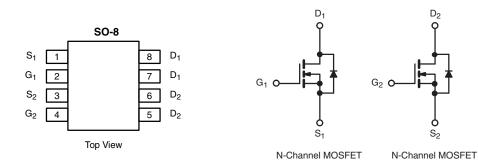


Dual N-Channel 30 V (D-S) MOSFET


PRODUCT SUMMARY						
V _{DS} (V)	R _{DS(on)} (Ω)	I _D (A) ^a	Q _g (Typ.)			
30	0.016 at V _{GS} = 10 V	8.5	7.1			
30	0.020 at V _{GS} = 4.5 V	7.6	7.1			

FEATURES

- TrenchFET[®] Power MOSFET
- 100 % R_g Tested ٠
- 100 % UIS Tested
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Notebook System Power
- Low Current DC/DC

ABSOLUTE MAXIMUM RATINGS ($T_A =$	25 °C, unless othe	rwise noted)			
Parameter	Symbol	Limit	Unit		
Drain-Source Voltage	V _{DS}	30	V		
Gate-Source Voltage		V _{GS}	± 20	v	
	T _C = 25 °C		8.5		
Continuous Drain Current (T ₁ = 150 °C)	T _C = 70 °C	1_	7.5	Ī	
Continuous Drain Current (1j = 150°C)	T _A = 25 °C	I _D	7.2 ^{b, c}	Ī	
	T _A = 70 °C		5.9 ^{b, c}	Ī	
Pulsed Drain Current	·	I _{DM}	30		
Source-Drain Current Diode Current	T _C = 25 °C	L	2.8	A	
Source-Drain Current Diode Current	T _A = 25 °C	I _S	1.8 ^{b, c}	1	
Pulsed Source-Drain Current	I _{SM}	30			
Single Pulse Avalanche Current		I _{AS}	10	_	
Single Pulse Avalanche Energy	L = 0.1 mH	E _{AS}	5		
	T _C = 25 °C		3.1		
Maximum Dawar Dissinction	T _C = 70 °C	P	2.0	w	
Maximum Power Dissipation	T _A = 25 °C	P _D –	2.0 ^{b, c}	V	
	T _A = 70 °C		1.25 ^{b, c}	1	
Operating Junction and Storage Temperature Range	T _J , T _{sta}	- 55 to 150	°C		

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Тур.	Max.	Unit		
Maximum Junction-to-Ambient ^{b, d}	t ≤ 10 s	R _{thJA}	52	62.5	°C/W		
Maximum Junction-to-Foot (Drain)	Steady-State	R _{thJF}	30	40	0/11		

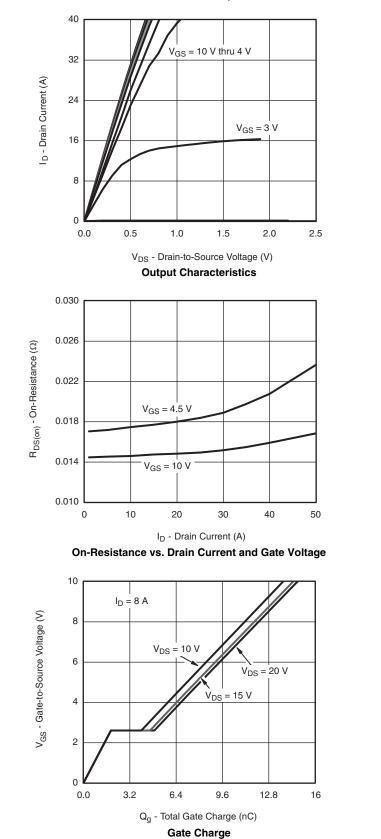
Notes:

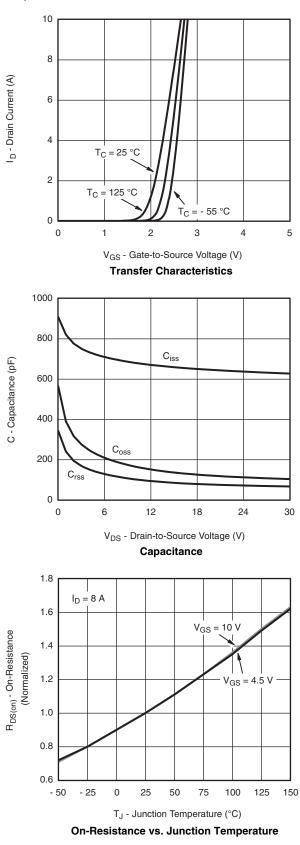
a. Based on T_C = 25 °C.

b. Surface mounted on 1" x 1" FR4 board.

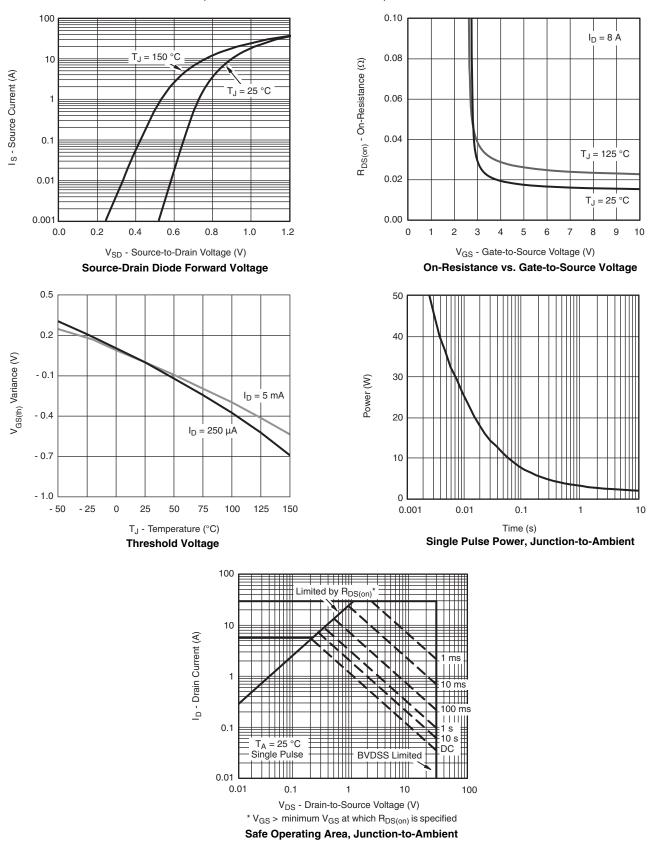
c. t = 10 s. d. Maximum under steady state conditions is 110 °C/W.

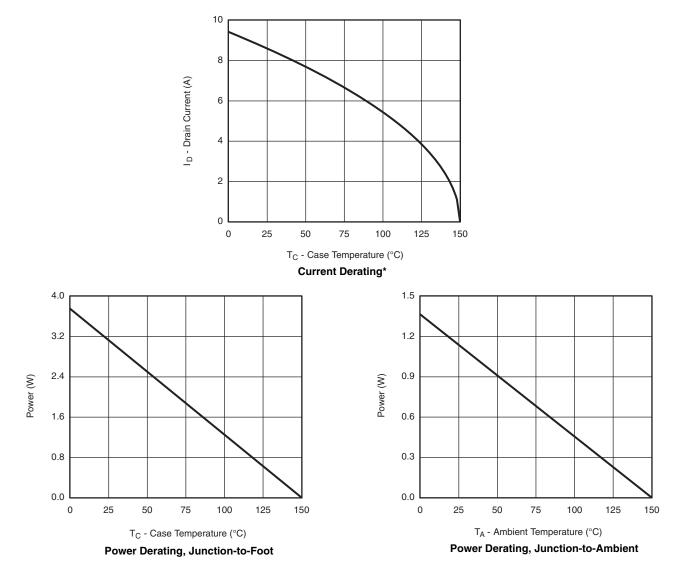
1

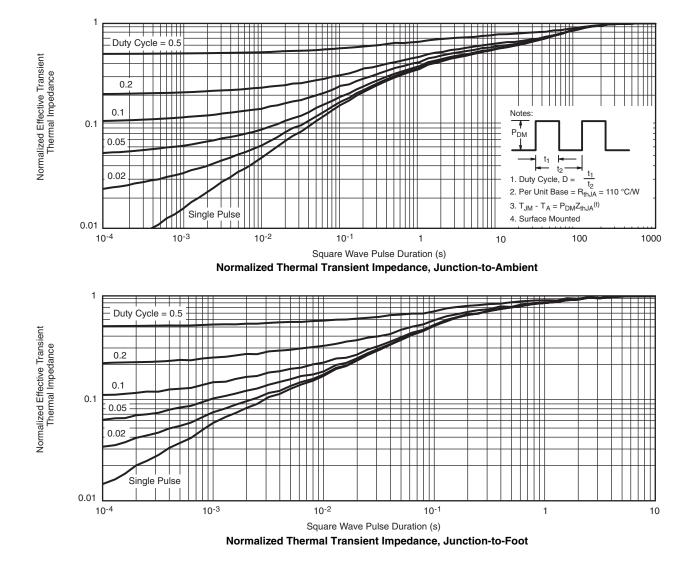



	SPECIFICATIONS (T _J = 25 °C	1	1	Mim	- Tree	Merr	ا اسال	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
		V	V = 0 V I = 250 µA	20			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•			30	2.0		v	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			6				mV/°C	
	()	. ,	=		- 5.2			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	•			1.2			-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Body Leakage	IGSS					nA	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zero Gate Voltage Drain Current	IDSS					μΑ	
$\begin{array}{ c c c c c c c } \hline V_{GS} = 10 \ V_{1D} = 8 \ A & 0.016 & 0.020 & 0.016 & 0.016 & 0.020 & 0.016 & 0.020 & 0.016 & 0.020 & 0.016 & 0.020 & 0.016 & 0.016 & 0.016 & 0.020 & 0.016 & 0.016 & 0.016 & 0.020 & 0.016 & 0.016 & 0.016 & 0.020 & 0.016 & 0.016 & 0.016 & 0.016 & 0.020 & 0.016 & $						10		
$\begin{array}{ c c c c c c } \hline \mbox{Drain-Source On-State Resistance}^{D} & \mbox{H}_{DS(on)} & \begin{tabular}{ c c c c c } \hline \mbox{V}_{GS} = 4.5 \ V, \ I_{D} = 5 \ A & 0.020 & \end{tabular} \end{tabular} \end{tabular} \\ \hline \mbox{Forward Transconductance}^{D} & \end{tabular} \end{tabuar} \end{tabular} \end{tabular} \end{tabuar} \en$	On -State Drain Current ^b	I _{D(on)}	50 60	20			A	
$ \begin{array}{ c c c c c c } \hline V_{GS} = 4.5 \ V, \ V_{DS} = 15 \ V, \ V_{DS} = 10 \ V, \ I_{D} = 1 \ MHz \\ \hline PF \\ \hline PF \\ \hline \hline PF \\ \hline \hline PF \\ \hline PF \\ \hline \hline PF \\ PF \\$	Drain-Source On-State Resistance ^b	BDC(cm)			0.016		0	
	Drain-Source On-State Resistance	- DS(011)	30 B		0.020			
$ \begin{array}{ c c c c c c c c c } \hline Input Capacitance & C_{ISS} \\ \hline Output Capacitance & C_{OSS} \\ \hline Output Capacitance & C_{rss} \\ \hline Output Capacitance & C_{rss} \\ \hline V_{DS} = 15 \ V, \ V_{GS} = 0 \ V, \ I_D = 1 \ MHz \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 10 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DS} = 15 \ V, \ V_{GS} = 4.5 \ V, \ I_D = 8 \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 8 \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 8 \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 15 \ V, \ I_D = 10 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ V, \ I_D = 10 \ V, \ I_D = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \\ \hline M_{DD} = 10 \ M \ A \ A \\ \hline M_{DD} = 10 \ M \ A \ A \\ \hline M_{DD} = 10 \ M \ A \ A \\ \hline M_{DD} = 10 \ M \ A \ A \\ \hline M_{DD} = 10 \ M \ A \ $	Forward Transconductance ^b	9 _{fs}	$V_{DS} = 15 \text{ V}, \text{ I}_{D} = 8 \text{ A}$		27		S	
$ \begin{array}{ c c c c c c } \hline \mbox{Output Capacitance} & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Dynamic ^a							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			660			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Output Capacitance	C _{oss}	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ MHz}$		140		pF	
$ \begin{array}{ c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Reverse Transfer Capacitance	C _{rss}			86		1	
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Total Gate Charge	0	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 10 \text{ V}, \text{ I}_{D} = 8 \text{ A}$		14.5	22		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Q _g			7.1	11		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge	Q _{gs}	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 8 \text{ A}$		1.9		nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge	Q _{gd}			2.7			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	Rg	f = 1 MHz	0.5	2.6	5.2	Ω	
$\begin{tabular}{ c c c c c } \hline I_{Urn-Off Delay Time & t_{d(off)} & I_D \cong 5 \mbox{ A, } V_{GEN} = 4.5 \mbox{ V, } R_g = 1 \ \Omega & 18 & 35 \\ \hline I_{D} \cong 5 \mbox{ A, } V_{GEN} = 4.5 \mbox{ V, } R_g = 1 \ \Omega & 12 & 24 \\ \hline I_{D} \cong 0 & I_2 & 24 & 12 & 24 \\ \hline I_{TUrn-On Delay Time & t_{d(off)} & V_{DD} = 15 \mbox{ V, } R_L = 3 \ \Omega & 10 & 20 \\ \hline I_D \cong 5 \mbox{ A, } V_{GEN} = 10 \ V, R_g = 1 \ \Omega & 15 & 30 & 10 \\ \hline I_D \cong 5 \mbox{ A, } V_{GEN} = 10 \ V, R_g = 1 \ \Omega & 15 & 30 & 10 \\ \hline I_D \cong 5 \mbox{ A, } V_{GEN} = 10 \ V, R_g = 1 \ \Omega & 15 & 30 & 10 \\ \hline Drain-Source Body Diode Characteristics & & & & & & & & & & & & & & & & & & &$	Turn-On Delay Time	t _{d(on)}			14	28		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time	t _r	V_{DD} = 15 V, R_L = 3 Ω		45	80	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-Off Delay Time	t _{d(off)}	$I_D \cong 5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$		18	35	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time	. ,			12	24		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time	t _{d(on)}			7	14	ns	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rise Time		$V_{DD} = 15 \text{ V}, \text{ R}_1 = 3 \Omega$		10	20		
Fall Timetf714Drain-Source Body Diode Characteristics714Drain-Source Body Diode Characteristics714Continuous Source-Drain Diode CurrentIs $T_C = 25 ^{\circ}C$ 2.8Pulse Diode Forward Current ^a IsM30Body Diode Voltage V_{SD} $I_S = 2 A$ 0.77Body Diode Reverse Recovery Time t_{rr} 11734Body Diode Reverse Recovery Charge Q_{rr} Q_{rr} $I_F = 5 A$, dl/dt = 100 A/µs, $T_J = 25 ^{\circ}C$ 9Reverse Recovery Fall Time t_a nC nS	Turn-Off Delay Time				15	30	_	
Drain-Source Body Diode CharacteristicsContinuous Source-Drain Diode CurrentIS $T_C = 25 \ ^{\circ}C$ 2.8APulse Diode Forward Current ^a ISM3030Body Diode Voltage V_{SD} $I_S = 2 A$ 0.771.1VBody Diode Reverse Recovery Time t_{rr} 1734nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 5 A$, dl/dt = 100 A/µs, $T_J = 25 \ ^{\circ}C$ 918nCReverse Recovery Fall Time t_a T_a T_a T_a T_a T_a					7	14	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source Body Diode Characterist		<u> </u>					
Pulse Diode Forward Current ^a Ism30Body Diode Voltage V_{SD} $I_S = 2 A$ 0.771.1VBody Diode Reverse Recovery Time t_{rr} 1734nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 5 A$, dl/dt = 100 A/µs, $T_J = 25 °C$ 918nCReverse Recovery Fall Time t_a $I_F = 5 A$, dl/dt = 100 A/µs, $T_J = 25 °C$ 10nS		1	T _C = 25 °C			2.8	- A	
Body Diode VoltageV SDI S I S S0.771.1VBody Diode Reverse Recovery Time t_{rr} 1734nsBody Diode Reverse Recovery Charge Q_{rr} I F F1734nsReverse Recovery Fall Time t_a I F10nS	Pulse Diode Forward Current ^a					30		
Body Diode Reverse Recovery Time t_{rr} 1734nsBody Diode Reverse Recovery Charge Q_{rr} $I_F = 5 \text{ A}$, dl/dt = 100 A/µs, $T_J = 25 \text{ °C}$ 918nCReverse Recovery Fall Time t_a $I_F = 5 \text{ A}$, dl/dt = 100 A/µs, $T_J = 25 \text{ °C}$ 10nS			I _S = 2 A		0.77		V	
Body Diode Reverse Recovery Charge Q_{rr} IF = 5 A, dl/dt = 100 A/µs, TJ = 25 °C918nCReverse Recovery Fall Time t_a 10nS							ns	
Reverse Recovery Fall Time t_a $I_F = 5 \text{ A}, dl/dl = 100 \text{ A}/\mu\text{s}, T_J = 25 \text{ C}$ 10 nS	, ,		ł – – – – – – – – – – – – – – – – – – –					
nS			$I_F = 5 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, \text{ T}_J = 25 ^\circ\text{C}$.0		
	Reverse Recovery Rise Time	t _a	· · ·		7		nS	

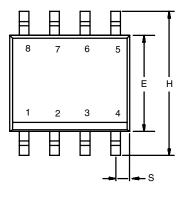
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

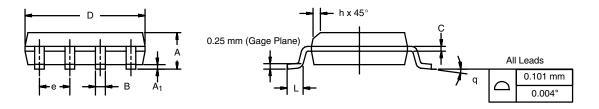



服务热线:400-655-8788

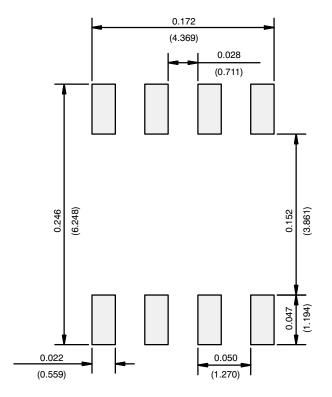


* The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.





SOIC (NARROW): 8-LEAD JEDEC Part Number: MS-012



	MILLIM	IETERS	INCHES			
DIM	Min	Мах	Min	Max		
A	1.35	1.75	0.053	0.069		
A ₁	0.10	0.20	0.004	0.008		
В	0.35	0.51	0.014	0.020		
С	0.19	0.25	0.0075	0.010		
D	4.80	5.00	0.189	0.196		
E	3.80	4.00	0.150	0.157		
е	1.27	BSC	0.050 BSC			
Н	5.80	6.20	0.228	0.244		
h	0.25	0.50	0.010	0.020		
L	0.50	0.93	0.020	0.037		
q	0°	8°	0°	8°		
S	0.44	0.64	0.018	0.026		
ECN: C-06527-Rev. I, 11-Sep-06 DWG: 5498						

RECOMMENDED MINIMUM PADS FOR SO-8

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be oHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.