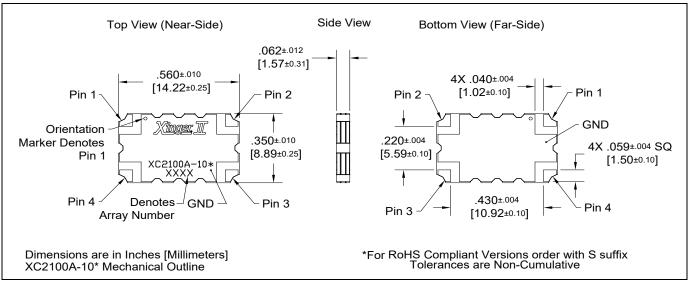


10 dB Directional Coupler

Description:

The XC2100A-10 is a low profile, high performance 10dB directional coupler in a new easy to use, manufacturing friendly surface mount package. It is designed for UMTS and other 3G applications. The XC2100A-10 is designed particularly for power and frequency detection, as well as for power injection for example in feed-forward, where tightly controlled coupling and low insertion loss is required. It can be used in high power applications up to 175 Watts.

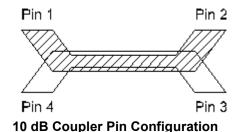

Parts have been subjected to rigorous qualification testing and they are manufactured using materials with coefficients of thermal expansion (CTE) compatible with common substrates such as FR4, G-10, RF-35, RO4350, and polyimide. Available in both 5 of 6 tin lead (XC2100A-10P) and 6 of 6 tin immersion (XC2100A-10S) RoHS compliant finishes.

Electrical Specifications**

Features:	Frequency	Mean Coupling	Insertion Loss	VSWR		
 2000 – 2300 MHz 	MHz	dB	dB Max	Max : 1		
 UMTS and other 3G 	2000-2300	10.1 ± 0.50	0.16	1.15		
High Power	2110-2170	10.0 ± 0.40	0.10	1.13		
 Very Low Loss 	2110-2170	10.0 ± 0.40	0.14	1.12		
High Directivity						
Tight Coupling	Directivity	Frequency	Power	Operating		
 Production Friendly 	Directivity	Sensitivity	i owei	Temp.		
 Tape and Reel 	dB Min	dB Max	Avg. CW Watts	°C		
 Available in Lead-Free (as 	23	± 0.10	150	-55 to +95		
illustrated) or Tin-Lead	25	+ 0.05	175	55 to +05		
 Reliable, FIT=0.73 	25	± 0.05	175	-55 to +95		

**Specification based on performance of unit properly installed on TTM Technologies Test Board 54606-0003 with small signal applied. Specifications subject to change without notice. Refer to parameter definitions for details.

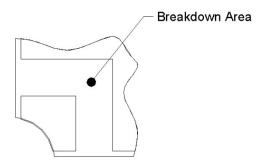
Mechanical Outline:


WWW.TTM.COM

FOLLOW US f in 🍬 📭 💿 🖸 #TTM #TTMTECH #INSPIRINGINNOVATION

Directional Coupler Pin Configuration

The XC2100A-10 has an orientation marker to denote Pin 1. Once port one has been identified the other ports are known automatically. Please see the chart below for clarification:

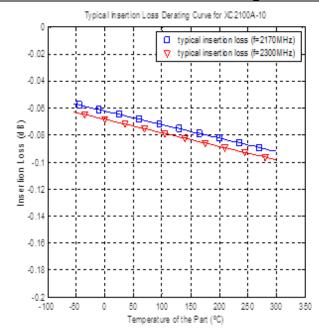


Pin 1	Pin 2	Pin 3	Pin 4
Input	Direct	Isolated	Coupled
Direct	Input	Coupled	Isolated

Note: The direct port has a DC connection to the input port and the coupled port has a DC connection to the isolated port. For optimum performance use Pin 1 or Pin 2 as inputs.

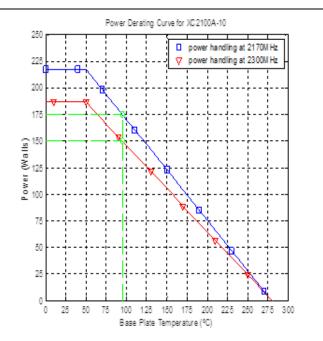
Peak Power Handling

High-Pot testing of these couplers during the qualification procedure resulted in a minimum breakdown voltage of 1.7KV (minimum recorded value). This voltage level corresponds to a breakdown resistance capable of handling at least 12dB peaks over average power levels, for very short durations. The breakdown location consistently occurred across the air interface at the coupler contact pads (see illustration below). The breakdown levels at these points will be affected by any contamination in the gap area around these pads. These areas must be kept clean for optimum performance. It is recommended that the user test for voltage breakdown under the maximum operating conditions and over worst case modulation induced power peaking. This evaluation should also include extreme environmental conditions (such as high humidity).



WWW.TTM.COM

FOLLOW US f in & D 0 1 #TTM #TTMTECH #INSPIRINGINNOVATION

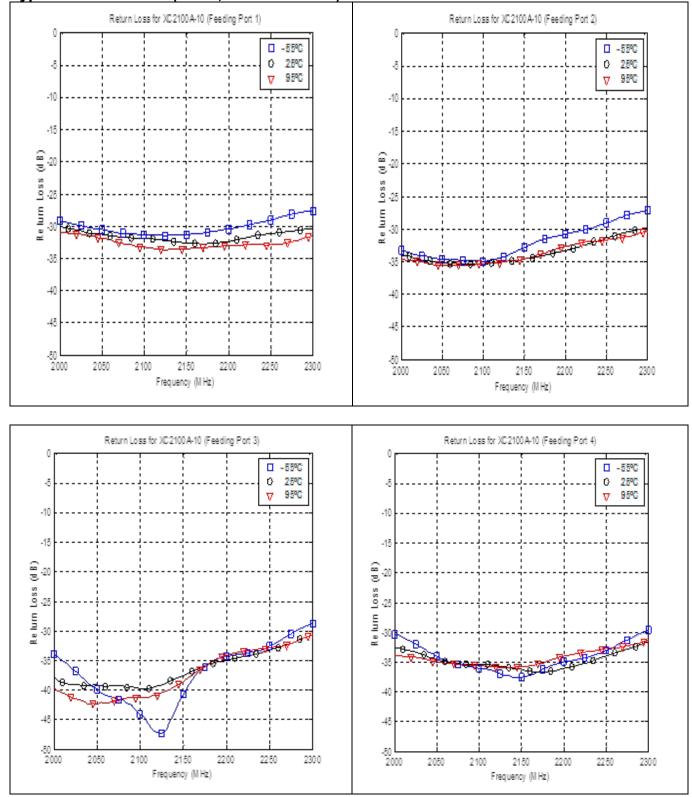


Insertion Loss and Power Derating Curves

Insertion Loss Derating

The insertion loss, at a given frequency, of a group of couplers is measured at 25° C and then averaged. The measurements are performed under small signal conditions (i.e. using a Vector Network Analyzer). The process is repeated at 95° C, 150° C, and 200° C. A best-fit line for the measured data is computed and then plotted from -55° C to 300° C.

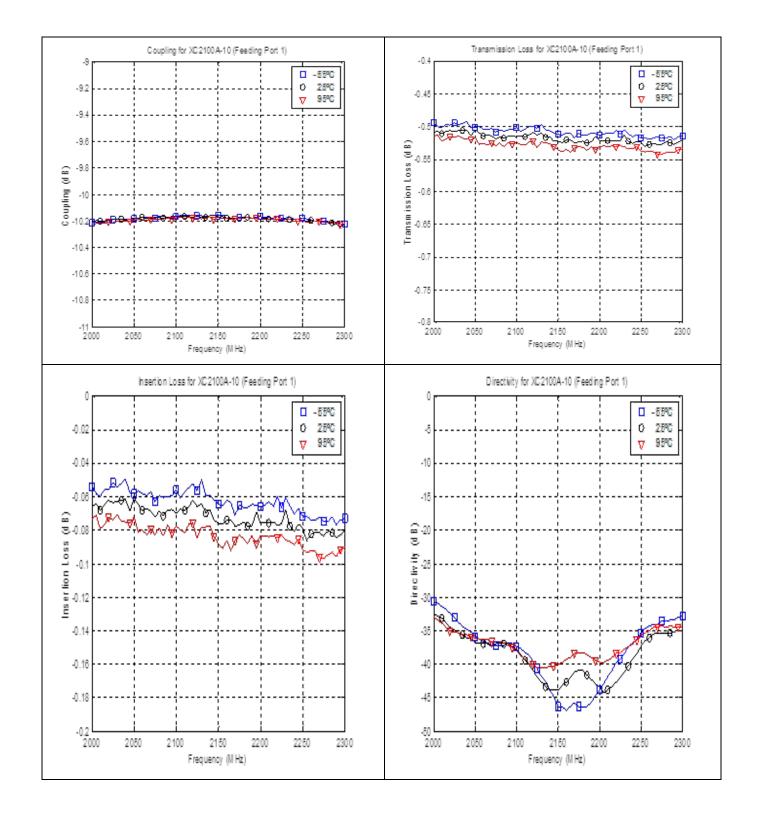
Power Derating


The power handling and corresponding power derating plots are a function of the thermal resistance, mounting surface temperature (base plate temperature), maximum continuous operating temperature of the coupler, and the thermal insertion loss. The thermal insertion loss is defined in the Power Handling section of the data sheet.

As the mounting interface temperature approaches the maximum continuous operating temperature, the power handling decreases to zero.

WWW.TTM.COM

FOLLOW US f in & D O I #TTM #TTMTECH #INSPIRINGINNOVATION


Typical Performance (-55°C, 25°C and 95°C): 2000-2300 MHz

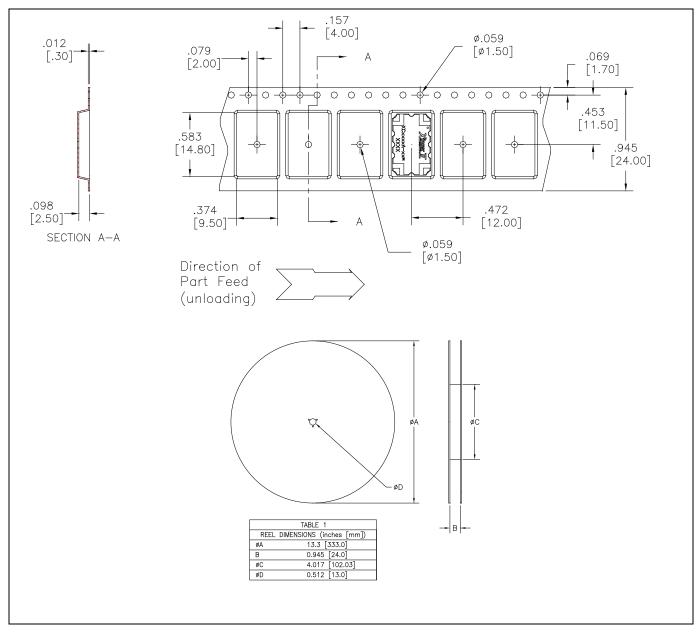
WWW.TTM.COM

FOLLOW US f in • • • • • • • #TTM #TTMTECH #INSPIRINGINNOVATION

WWW.TTM.COM

FOLLOW US f in the provided of the following of the foll

Definition of Measured Specifications


Parameter	Definition	Mathematical Representation
VSWR (Voltage Standing Wave Ratio)	The impedance match of the coupler to a 50Ω system. A VSWR of 1:1 is optimal.	$VSWR = \frac{V_{max}}{V_{min}}$ Vmax = voltage maxima of a standing wave Vmin = voltage minima of a standing wave
Return Loss	The impedance match of the coupler to a 50Ω system. Return Loss is an alternate means to express VSWR.	$Return Loss(dB) = 20log \frac{VSWR + 1}{VSWR - 1}$
Mean Coupling	At a given frequency (ω _n), coupling is the input power divided by the power at the coupled port. Mean coupling is the average value of the coupling values in the band. N is the number of frequencies in the band.	Coupling(dB) = C(ω_n) = 10log $\frac{P_{in}(\omega_n)}{P_{cpl}(\omega_n)}$ Mean Coupling(dB) = $\frac{\sum_{n=1}^{N} C(\omega_n)}{N}$
Insertion Loss	The input power divided by the sum of the power at the two output ports.	$10\log \frac{P_{in}}{P_{cpl} + P_{direct}}$
Transmission Loss	The input power divided by the power at the direct port.	$10\log \frac{P_{in}}{P_{direct}}$
Directivity	The power at the coupled port divided by the power at the isolated port.	$10\log \frac{P_{cpl}}{P_{iso}}$
Frequency Sensitivity	The decibel difference between the maximum in band coupling value and the mean coupling, and the decibel difference between the minimum in band coupling value and the mean coupling.	Max Coupling (dB) – Mean Coupling (dB) and Min Coupling (dB) – Mean Coupling (dB)

WWW.TTM.COM

Packaging and Ordering Information:

Parts are available in both reel and tube. Packaging follows EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 2000 per reel and 30 per tube. See Model Numbers below for further ordering information.

Contact us: rf&s_support@ttm.com

WWW.TTM.COM

FOLLOW US f in & D O I #TTM #TTMTECH #INSPIRINGINNOVATION