Retriggerable Monostable Multivibrator (with Clear) # ELECTRICALLY TESTED PER: MIL-M-38510/31403 This d-c triggered multivibrators feature pulse width control by three methods. The basic pulse width is programmed by selection of external resistance and capacitance values. The 'LS122 has an internal timing resistor that allows the circuit to be used with only an external capacitor. Once triggered, the basic pulse width may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear. The 'LS122 has a Schmitt trigger input to ensure jitter-free triggering from the B input with transition rates as slow as 0.1 millivolt per nanosecond. - Overriding Clear Terminates Output Pulse - Compensated for V_{CC} and Temperature Variations - D-C Triggered from Active-High or Active-Low Gated Logic Inputs - Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle - Internal Timing Resistors | LS122 FUNCTION TABLE | | | | | | | | | |----------------------|----------------|----------------|----------------|-------------|----|---------------|--|--| | | Out | outs | | | | | | | | CLEAR | A ₁ | A ₂ | B ₁ | 82 | a | ā | | | | L | X | X | × | × | L | н | | | | Х | Н | Н | Х | X
X
X | L | Н | | | | Х | Х | Х | L | Х | L | Н | | | | Х | Х | X | X | L | L | н | | | | Н | L | Х | î | Н |] | ╙ | | | | н | L | X | Ĥ | 1 | 几 | J | | | | н | Х | L | 1 | Ĥ | | \mathcal{L} | | | | н | Х | L | H | 1 | | J | | | | н | н | ļ | Н | Ĥ | 7 | Ţ | | | | н | Ţ | Ì | Н | н | 17 | Т | | | | н | Ţ | Н | Н | Н | | J | | | | 1 | Ĺ | Χ. | Н | Н | | 心 | | | | ĺ | Х | L | Н | н | 7. | J. | | | #### LOGIC DIAGRAM # Military 54LS122 #### **AVAILABLE AS:** 1) JAN: JM38510/31403BXA 2) SMD: 7600301 3) 883C: 54LS122/BXAJC X = CASE OUTLINE AS FOLLOWS: PACKAGE: CERDIP: C CERFLAT: D LCC: 2 *Call Factory for latest update #### PIN ASSIGNMENTS | FUNCTION | DIL | FLATS | FCC | BURN-IN
(CONDITION A) | |------------------|-----|-------|-----|--------------------------| | A ₁ | 1 | 1 | 2 | VCC | | A ₂ | 2 | 2 | 3 | VCC | | B ₁ | 3 | 3 | 4 | Vcc | | B ₂ | 4 | 4 | 6 | VCC | | CLR | 5 | 5 | 8 | GND | | ã | 6 | 6 | 9 | VCC | | GND | 7 | 7 | 10 | GND | | Q | 8 | 8 | 12 | OPEN | | R _{int} | 9 | 9 | 13 | Vcc | | N.C. | 10 | 10 | 14 | Vcc | | C _{ext} | 11 | 11 | 16 | GND | | N.C. | 12 | 12 | 18 | VCC | | Rext/Cext | 13 | 13 | 19 | OPEN | | VCC | 14 | 14 | 20 | V _{CC} | BURN-IN CONDITIONS: VCC = 5.0 V MIN/6.0 V MAX #### NOTES - An external timing capacitor may be connected between C_{ext} and R_{ext}/C_{ext} (positive). To use the internal timing resistor of the 'LS122, connect R_{int} to - To use the internal timing resistor of the LS122, connect R_{int} to VCC. - For improved pulse width accuracy connect an external resistor between R_{ext}:C_{ext} and V_{CC} with R_{int} open-circuited. To obtain variable pulse widths, connect an external variable - To obtain variable pulse widths, connect an external variable resistance between R_{int}/C_{ext} and V_{CC}. #### t #### TYPICAL APPLICATION DATA The output pulse tp is a function of the external components, C_{ext} and R_{ext} or C_{ext} and R_{int} on the 'LS122. For values of $C_{\text{ext}} \ge 1000$ pF, the output pulse at $V_{\text{CC}} = 5.0$ V and $V_{\text{RC}} = 5.0$ V is given by tp = K R_{ext} C_{ext} where K is nominally 0.45. If C_{ext} is in pF and R_{ext} is in $k\Omega$ then tp is in nanoseconds. The C_{ext} terminal of the 'LS122 and 'LS123 is an internal connection to ground, however for the best system performance C_{ext} should be hardwired to ground. Care should be taken to keep R_{ext} and C_{ext} as close to the monostable as possible with a minimum amount of inductance between the R_{ext}/C_{ext} junction and the R_{ext}/C_{ext} pin. Good groundplane and adequate bypassing should be designed into the system for optimum performance to insure that no false triggering occurs. It should be noted that the C_{ext} pin is internally connected to ground on the 'LS122 and 'LS123, but not on the 'LS221. Therefore, if C_{ext} is hardwired externally to ground, substitution of a 'LS221 onto a 'LS123 socket will cause the 'LS221 to become non-functional. The switching diode is not needed for electrolytic capacitance application and should not be used on the 'LS122 and 'LS123. To find the value of K for $C_{\text{ext}} \ge 1000$ pF, refer to Figure 4. Variations on V_{CC} or V_{RC} can cause the value of K to change, as can the temperature of the 'LS123, 'LS122. Figures 5 and 6 show the behavior of the circuit shown in Figures 1 and 2 if separate power supplies are used for V_{CC} and V_{RC}. If V_{CC} is tied to V_{RC}, Figure 7 shows how K will vary with V_{CC} and temperature. Remember, the changes in R_{ext} and C_{ext} with temperature are not calculated and included in the graph. As long as $C_{ext} \ge 1000$ pF and 5.0 k $\le R_{ext} \le 160$ k (54LS122/123), the change in K with respect to R_{ext} is negligible. If $C_{\text{ext}} \le 1000$ pF the graph shown on Figure 8 can be used to determine the output pulse width. Figure 9 shows how K will change for $C_{\text{ext}} \le 1000$ pF if V_{CC} and V_{RC} are connected to the same power supply. The pulse width tp in nanoseconds is approximated by $$tp = 6.0 + 0.05 C_{ext} (pF) + 0.45 R_{ext} (k\Omega)$$ $$C_{ext} + 11.6 R_{ext}$$ In order to trim the output pulse width, it is necessary to include a variable resistor between V_{CC} and the R_{ext} C_{ext} pin or between V_{CC} and the R_{ext} pin of the 'LS122. Figures 10, 11 and 12 show how it can be done. R_{ext} remote should be kept as close to the monostable as possible. Retriggering of the part, as shown in Figure 3, must not occur before C_{ext} is discharged or the retrigger will not have any effect. The discharge time of C_{ext} in nanoseconds is guaranteed to be less than 0.22 C_{ext} (pF) and is typically 0.05 C_{ext} (pF). For the smallest possible deviation in output pulse widths from various devices, it is suggested that C_{ext} be kept \geq 1000 pF. VRC VCC R_{ext} Cext Rext Vcc Cext Cext CLR α О Роит **B2 B**1 'LS122 A2 PIN A1 ā GND 51 Ω Figure 2 MOTOROLA MILITARY ALS/FAST/LS/TTL DATA Vcc #### WAVEFORMS Figure 3 Figure 8 Figure 9 Figure 10. 'LS123 Remote Trimming Circuit Figure 11. 'LS122 Remote Trimming Circuit Without Rext Figure 12. 'LS122 Remote Trimming Circuit With RINT #### LOAD FOR OUTPUT UNDER TEST #### **SWITCHING WAVEFORMS** #### tplH and tp Waveforms #### tpLH2 and tp Waveforms ### NOTES: - 1. Pulse generator has the following characteristics: Pulse generator has the rollowing characteristics: PRR ≤ 1.0 MHz, t₁ ≤ 15 ns. t₂ ≤ 6.0 ns. t₂n₁ ≥ 40 ns and Z_{OUT} = 50 Ω. C₁ = 50 pF ± 10%, including scope probe, wiring and stray capacitance without package in test fixture. R₁ = 2.0 Ω ± 5.0%. All diodes are 1N3064 or 1N916 or equivalent. - The limits specified for C_L = 15 pF are guaranteed but not tested. t_{setup} (max) shall be ≤ 50% of the typical output pulse width for the actual C_{ext} used. - C_{ext} connected to R_{ext}·C_{ext} through a 1,000 pF ± 10% capacitor. R_{ext}·C_{ext} connected to V_{CC} through a 5.0 kΩ ± 10% resistor. R_{ext}·C_{ext} connected to V_{CC} through a 5.0 kΩ to 180 kΩ resistor, and C_{ext} connected to R_{ext}·C_{ext} through a ≤ 1,000 pF capacitor. R_{ext}·C_{ext} connected to V_{CC} through a 10 kΩ ± 10% resistor. C_{ext} connected to R_{ext}·C_{ext} through a ≥ 45 pF capacitor. C_{ext} connected to V_{CC} through a 10 kΩ ± 10% resistor. #### **SWITCHING WAVEFORMS** # tpLH1 Waveforms # tpHL2 Waveforms | Symbol Parameter Static Parameters: | | Limits | | | | | | Units | Test Condition
(Unless Otherwise Specified) | |--------------------------------------|---------------------------------|---------------------|-------|----------------------|-------|----------------------|-------|-------|---| | | | +25°C
Subgroup 1 | | + 125℃
Subgroup 2 | | - 55°C
Subgroup 3 | | | | | | | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | | | | Vон | Logical "1"
Output Voltage | 2.5 | | 2.5 | | 2.5 | | v | $\begin{array}{lll} V_{CC} = 4.5 \text{ V, } I_{OH} = -0.4 \text{ mA,} \\ V_{IH} = 2.0 \text{ V, other input} = 0.7 \text{ V,} \\ B_2 = (\text{See Note 1) or 0.7 V, } R_{int} = GND \\ \text{or 4.5 V, } R_{ext} = GND, CLR = 4.5 \text{ V.} \\ \end{array}$ | | V _{OL} | Logical "0"
Output Voltage | | 0.4 | | 0.4 | | 0.4 | v | $ \begin{aligned} & \text{V}_{CC} = 4.5 \text{ V, I}_{OH} = 4.0 \text{ mA, V}_{IH} = 2.0 \text{ V} \\ & \text{other input} = 0.7 \text{ V, B}_2 = (\text{See Note 1}) \\ & \text{or 0.7 V, R}_{int} = \text{GND or 4.5 V,} \\ & \text{R}_{ext} = \text{GND, CLR} = 4.5 \text{ V.} \end{aligned} $ | | V _{IC} | Input Clamping
Voltage | | - 1.5 | | | | | ٧ | V _{CC} = 4.5 V, I _{IN} = -18 mA, other inputs are open. | | Ή | Logical "1"
Input Current | | 20 | | 20 | | 20 | μА | V _{CC} = 5.5 V, V _{IH} = 2.7 V, other input is GND, CLR = 2.7 V. | | інн | Logical "1"
Input Current | | 100 | | 100 | | 100 | μА | V _{CC} = 5.5 V, V _{IHH} = 5.5 V, other input is GND, CLR = 5.5 V. | | ŧιL | Logical "0"
Input Current | - 120 | - 360 | - 120 | - 360 | - 120 | - 360 | μА | V _{CC} = 5.5 V, V _{IN} = 4.5 V, other inputs = 0.4 V. | | los | Output Short
Circuit Current | - 15 | - 100 | - 15 | - 100 | - 15 | - 100 | mA | V _{CC} = 5.5 V, V _{IN} = 4.5 V,
B ₂ = (See Note 1) or GND,
CLR = 4.5 V, R _{int} = GND or 4.5 V,
other inputs = GND, V _{OUT} = GND. | | ¹ ссн | Power Supply
Current | | 11 | | 11 | | 11 | mA | $V_{CC} = 5.5 \text{ V, V}_{ N} = 5.5 \text{ V,}$ $A = (\text{See Note 1}), R_{int} = 5.5 \text{ V,}$ $R_{ext} = 0.9 \text{ V.}$ | | CCL | Power Supply
Current | | 11 | | 11 | | 11 | mA | V _{CC} = 5.5 V, V _{IN} = 5.5 V,
B = GND, R _{int} = 5.5 V. | | V _{IH} | Logical "1"
Input Voltage | 2.0 | | 2.0 | | 2.0 | | v | V _{CC} = 4.5 V. | | VIL | Logical "0"
Input Voltage | | 0.7 | | 0.7 | | 0.7 | ٧ | V _{CC} = 4.5 V. | | | | Subgroup 7 | | Subgroup 8A | | Subgroup 8B | | | | | | Functional Tests | | | | | | | | per Truth Table with V _{CC} = 5.0 V,
V _{INL} = 0.4 V, and V _{INH} = 2.5 V. | | Symbol | Parameter | Limits | | | | | | Units | Test Condition
(Unless Otherwise Specified) | |--|--|----------------------|------------|------------------------|----------|----------------------|----------|----------|--| | | Switching
Parameters | + 25°C
Subgroup 9 | | + 125°C
Subgroup 10 | | −55°C
Subgroup 11 | | | | | | | | | | | | | | | | | | Min | Max | Min | Max | Min | Max | ĺ | | | tPHL1
tPHL1 | Propagation Delay
/Data-Output
Output High-Low | 5.0 | 50
45 | 5.0 | 75
70 | 5.0 | 75
70 | ns
ns | $\begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array}$ | | ^t PLH1
^t PLH1 | Propagation Delay
/Data-Output
Output Low-High | 5.0 | 38
33 | 5.0 | 57
52 | 5.0 | 57
52 | ns
ns | $ \begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array} $ | | tPHL2
tPHL2 | Propagation Delay
/Data-Output
Output High-Low | 5.0 | 61
56 | 5.0 | 92
87 | 5.0 | 92
87 | ns
ns | $ \begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array} $ | | ^t PLH2
^t PLH2 | Propagation Delay
/Data-Output
Output Low-High | 5.0 | 49
44 | 5.0 | 74
69 | 5.0 | 74
69 | ns
ns | $\begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array}$ | | tPHL3 | Propagation Delay
/Data-Output
Output High-Low | 5.0 | 32
27 | 5.0 | 48
43 | 5.0 | 48
43 | ns
ns | $ \begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array} $ | | ^t PLH3
^t PLH3 | Propagation Delay
/Data-Output
Output Low-High | 5.0 | 50
45 | 5.0 | 75
70 | 5.0 | 75
70 | ns
ns | $ \begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array} $ | | ^t P(min) | A or B to Q | | 205
200 | 5.0 | | 5.0 | | ns
ns | $\begin{array}{l} V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ R_{\text{ext}} = 5.0 \text{ k}\Omega. \end{array}$ | | ^t PQ | A to B to Q | 5.0
4.0 | 6.0
6.0 | 3.0 | 6.25 | 3.0 | 6.25 | ns
ns | $\begin{split} & V_{CC} = 5.0 \text{ V, } C_L = 50 \text{ pF, } R_L = 2.0 \text{ k}\Omega. \\ & V_{CC} = 5.0 \text{ V, } C_L = 15 \text{ pF, } R_L = 2.0 \text{ k}\Omega, \\ & R_{\text{ext}} = 10 \text{ k}\Omega, C_{\text{ext}} = 1000 \text{ pF.} \end{split}$ |