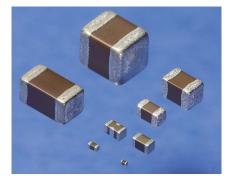


: CM Series(General)

: Cavity pitch 2mm / Reel Size Ø 180


: 0201

: X5R

: 2.2µF

: ±20%

6.3Vdc : Sn

RoHS Compliant

Features

Kyocera's series of Multilayer Ceramic Chip Capacitors are designed to meet a wide variety of needs. We offer a complete range of products for both general and specialized applications.

- We have a network worldwide in order to supply our global customer bases quickly and efficiently and to maintain our reputation as one of the highest-volume producers in the industry
- All our products are highly reliable due to their monolithic structure of high-purity and superfine uniform ceramics and their integral internal electrodes.
- ullet By combining superior manufacturing technology and materials with high dielectric constants, we produce extremely compact components with exceptional specifications.
- Our stringent quality control in every phase of production from material procurement to shipping ensures consistent manufacturing and super quality.
- Kyocera components are available in a wide choice of dimensions, temperature characteristics, rated voltages, and terminations to meet specific configurational requirements.

KYOCERA PART NUMBER											
<u>CM</u>	<u>03</u>	<u>X5R</u>	<u>225</u>	M	<u>06</u>	Α	H				
1	2	3	4	(5)	6	7	8	OPTION :			

Above digits are used to track individual (BPackaging specification or thickness.

④CAPACITANCE CODE

Capacitance expressed in pF. Two significant digits plus number of zeros. For Values < 10pF, Letter R denotes decimal point, <1,000pF=1nF、1,000nF=1µF>

(Example)

④Capacitance

⑦Termination

⑤Tolerance

⑥Voltage

Series

②Size ③Dielectric

(Example)

<u> </u>	17								
CODE	Capacitance		E STANDARD NUMBER						
R50	0.5pF		E3	E6	E12	E24			
1R0	1pF			1.0	1.0	1.0	1.1		
100	10pF		1.0	1.0	1.2	1.2	1.3		
101	100pF			1.5	1.5	1.5	1.6		
102	1nF			1.5	1.8	1.8	2.0		
103	10nF	22	2.2	2.2	2.2	2.4			
104	100nF		2.2	2.7	2.7	3.0			
105	1µF		2.2	2.2	2.2	3.3	3.3	3.3	3.6
106	10µF			3.3	3.9	3.9	4.3		
		ſ		4.7	4.7	4.7	5.1		
			4.7	4.7	5.6	5.6	6.2		
			4.7	6.8	6.8	6.8	7.5		
				0.0	8.2	8.2	9.1		

①SERIES CODE

CODE	Туре
CM	General
CT	Low Profile
CU	High-Q
KNH	Three Terminal Capacitors

@5IZ	2)SIZE CODE							
CODE	EIA	JIS						
02	01005	0402						
03	0201	0603						
05	0402	1005						
105	0603	1608						
21	0805	2012						
316	1206	3216						
32	1210	3225						

⑥VOLTAGE CODE

CODE Rated Voltage

4Vdc

6.3Vdc

10Vdc

16Vdc

25Vdc

35Vdc

50Vdc

100Vdc

04

06

10

16

25

35

50

100

③DIELECTRIC CODE

Temperature Compensation Type						
CODE	Temperature Range (℃)	ז∕°C				
CG	-55 to 125	EE to 10E 0	0	±30		
CH		0	±60			
•All parts of C0G will be marked as "CG" but will conform						

m to the above table.

· Temperature coefficients are determined by calculation based on measurement at 20°C and 85°C

	High Dielectric Constant Type									
CODE	Temperature Range (℃)	∆C max. (%)	Standard Temperature (°C)							
X5R	-55 to 85	±15								
X7R	±15		25							
X7S	-55 to 125	±22								

⑤TOLERANCE CODE

Temperature Compensation Type (C0G) CODE Tolerance A* ± 0.05pF B ± 0.1pF C ± 0.25pF D ± 0.5pF G* ± 2% J ± 5%		
CODE	Tolerance	
A [*]	±0.05pF	
В	±0.1pF	
С	±0.25pF	
D	±0.5pF	
G	±2%	
J	±5%	
К	±10%	
: Option		

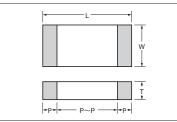
High Dielectric Constant Type(X5R/X7R/X7S) CODE Tolerance ±5% J Κ ±10% ±20% Μ

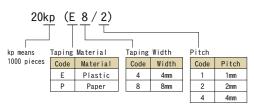
: Option

⑦TERMINATION CODE

	CODE	Termination						
	А	Nickel Barrier/ Tin						
* : Please contact us if Au termination								
	is nee	eded.						

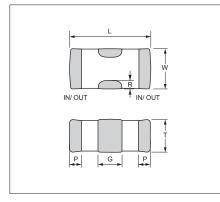
8 PACKAGING	CODE
-------------	------


CODE	Size Code	Cavity pitch	Reel size	
Т	105 to 32	4mm		
Н	02 to 05	2mm	φ180	
Q	03/05	1mm	Ψ160	
Р	02	1mm		
L	105 to 32	4mm		
Ν	02 to 05	2mm	Φ330	
W	03/05	1mm		



Dimension

CM/CT/CU Series

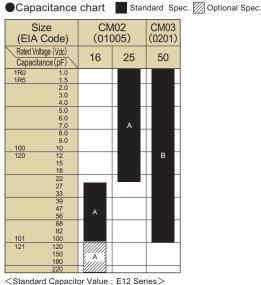


■Packaging Code

0.	Co	de	Dimension			Dimension (mm)				Quantity	/ per reel			
Size	EIA	JIS	Code	L	W	Т	P min.	P max.	P to P min.	φ 180 Reel	φ 330 Reel			
02	01005	0402	А	0.4±0.02	0.2±0.02	0.2±0.02	0.07	0.14	0.13	40kp(E4/1) 20kp(P8/2)	- 80kp(P8/2)			
			A B	0.6±0.03	0.3±0.03	0.22 max. 0.3±0.03	0.10	0.20	0.20	30kp(P8/1) 15kp(P8/2)	150kp(P8/1) 50kp(P8/2)			
03	0201	0603	С	0.6±0.05	0.3±0.05	0.3±0.05	0.13	0.23	0.19	15KP(F0/2)	50KP(F0/2)			
			D E	0.6±0.09	0.3±0.09	0.25 max. 0.3±0.09	0.13	0.23	0.19	15kp(P8/2)	-			
						A B C	1.0±0.05	0.5±0.05	0.22 max. 0.33 max. 0.5±0.05	0.15	0.35	0.30	20kp(P8/1) 10kp(P8/2)	100kp(P8/1) 50kp(P8/2)
05	0402	0402 1005	D	1.0±0.15	0.5±0.15	0.5±0.15	0.15	0.35	0.30	10kp(P8/2)	50kp (P8/2)			
			E	1.0±0.20	0.5±0.20	0.33 max. 0.5±0.20	0.15	0.35	0.30	10kp(P8/2)	-			
105	0603		A B	1.6±0.10	0.8±0.10	0.55 max. 0.8±0.10	0.20	0.60	0.50	4kp(P8/4)	401 (00/4)			
105	0603	1608	С	1.6±0.15	0.8±0.15	0.8±0.15	0.20	0.60	0.50		10kp(P8/4)			
			D	1.6±0.20	0.8±0.20	0.8±0.20	1							
			A	2.0±0.10	1.25±0.10	0.95 max.				4kp(P8/4)	10kp(P8/4)			
			В	2.0 ± 0.10	1.25±0.10	1.25±0.10]			3kp(E8/4)	10kp(E8/4)			
21	0805	2012	С	2.0±0.15	1.25±0.15	0.95 max.	0.20	0.75	0.70	4kp(P8/4)	10kp(P8/4)			
21	0605	2012	D	2.0 - 0.15	1.25 - 0.15	1.25±0.15	0.20	0.75	0.70	3kp(E8/4)	10kp(E8/4)			
			E	2.0±0.20	1.25±0.20	0.95 max.]		[4kp(P8/4)	10kp(P8/4)			
			F	2.0±0.20	1.25 ± 0.20	1.25±0.20]			3kp(E8/4)	10kp(E8/4)			
			А	3.2±0.20	1.6±0.15	1.6±0.15	0.30	0.85	1.40	2.5kp(E8/4)	5kp(E9/4)			
316	1206	3216	В	5.2 ± 0.20	1.6±0.20	1.6±0.20	0.30	0.85	1.40	2.0KP(E0/4)	5kp(E8/4)			
			С	3.2 ± 0.30	1.6±0.30	1.6±0.30	0.30	0.85	1.90	2kp(E8/4)	_			
32	1210	3225	A	3.2 ± 0.30	2.5±0.20	2.5±0.20	0.30	1.00	1.40	1kp(E8/4)	4kp(E8/4)			

KNH Series

Size	Co	ode	Dimension	Dimension (mm)						Packaging	
Size	EIA	JIS	Code	L	W	Т	G	Р	R	φ 180 Reel	φ 330 Reel
KNH		A	A	1.0 ± 0.10	0.5 ± 0.20	0.5max.					
05	0402	1005	В	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	0.3 ± 0.10	0.15 ± 0.10	≧ 0.05	10kp(P8/2)	_
05			С	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20					


KYOCERa

General CM Series

Features

We offer a diverse product line ranging from ultra-compact (0.4×0.2 mm) to large (3.2×2.5 mm) components configured for a variety of temperature characteristics, rated voltages, and packages. We offer the choice and flexibility for almost any applications.

Temperature Compensation Dielectric

Please contact for capacitance value other than standard.

Alphabets in capacitance chart denote dimensions. Please refer to the below table for detail.

(Example) In case of "B" for CM03 ; L $:0.6\pm0.03mm,$ W $:0.3\pm0.03mm$ T $:0.3\pm0.03mm$

	1								Pack	aging				
Size	Dimension	D	imension (mr	n)			φ 180 Reel		Fach	aging		φ 330 Reel		
Size	Code	L	W	Т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quantity	Taping Material	Taping Width	Cavity Pitch
02	_	0.4 ± 0.02	0.0 + 0.00	0.2 ± 0.02	Р	40,000	Plastic	4mm	1mm	_	-	_	_	-
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Н	20,000	Paper	8mm	2mm	Ν	80,000	Paper	8mm	2mm
03	в	06+002	0.3 ± 0.03	0 2 ± 0.02	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm
03		0.0 ± 0.03	0.5 ± 0.03	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	Ν	50,000	Paper	8mm	2mm

Applications

This standard type is ideal for use in a wide range of applications, from commercial to industrial equipment.

Part Number List : P18

[RoHS Compliant Products]

General CM Series

[RoHS Compliant Products]

Tan δ

Code 3

4

5

7

8

9

10

Tan δ

5.0%max.

7.0%max.

7.5%max.

10.0%max.

12.5%max.

15.0%max.

20.0%max.

X5R Dielectric

Part Number List : P19-20

●Cap	acitance	chart	Stan	dard Spe	ec. 💹 Op	otional Sp	ec.											
	Size A Code)		CM02 (01005))			CM03 (0201)					CN (04	105 02)				CM105 (0603)	
Capad	Voltage (Vdc) citance (pF)	6.3	10	16	4	6.3	10	16	25	4	6.3	10	16	25	35	10	16	25
101 151	100 150 220 330																	
102 152	470 680 1000 1500			A8														
152	2200 3300 4700								В3									
103 153	6800 10000 15000								ВЗ									
	22000 33000 47000	- A8 -					B7											
104	68000 100000 220000		∑ A8 ∑										C8	C3				
105	470000 1000000 2200000	A8				E B8 Z C8 Z C8/E8Z	E E9 Z	E103				C C8 Z	C7 2	E C7 3	E C7 3		B8	C8
106	4700000 10000000 15000000				<u>∑ E8 </u> ∑	Course	2 - 2			E D8 2	E F8 2	C8 Z Z F8 Z	C8 Z F8 Z	E F8 2		C8		D8 2 D9 2
	22000000									D8 // F8 //	N D8 X							

S (EIA	Size Code)		CN (08	/121 805)				CM (12	316 06)					CM32 (1210)		
	oltage (Vdc) itance (pF)	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50
105	1000000			B3	B8											
106	2200000 4700000 10000000	B4	B3 D8 F8	F8			A4	A3	A3 B8	🖉 ВЗ 🖉	<u>E B3 </u>			A3 -	A3 A8	A3
	22000000 47000000					B5		B8				A5	A4	- 10		

<Standard Capacitance Value>

Cpacitance value of less than 0.1 μ F :E6 Series

Cpacitance value of 0.1 μ F and larger :E3 Series

Please contact for capacitance value other than standard.

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for detail.

(Example) In case of "B3" for CM03 ; L : 0.6 \pm 0.03mm, W : 0.3 \pm 0.03mm, T : 0.3 \pm 0.03mm, Tan δ : 5.0% max.

			in an air an (nam	m)					Pack	aging				
Size	Dimension	D	imension (mn	n)			φ 180 Reel					φ 330 Reel		
Size	Code	L	W	т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quantity	Taping Material	Taping Width	Cavity Pitch
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Р	40,000	Plastic	4mm	1mm	_	—	-	-	-
02		0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Н	20,000	Paper	8mm	2mm	N	80,000	Paper	8mm	2mm
	в	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm
	В	0.0 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
03	С	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm
		0.0 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
	E	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н	15,000	Paper	8mm	2mm	—	-	-	_	-
	С	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Q	20,000	Paper	8mm	1mm	W	100,000	Paper	8mm	1mm
05		1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Н	10,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
05	D	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	Н	10,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm
	F	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н	10,000	Paper	8mm	2mm	-	-	-	-	-
	В	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
105	С	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
	D	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm
	B	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
21	D	2.0 ± 0.15	1.25 ± 0.15	1.25 ± 0.15	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
	F	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm
316	A	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm
310	В	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm
32	A	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	Т	1,000	Plastic	8mm	4mm	L	4,000	Plastic	8mm	4mm

General CM Series

[RoHS Compliant Products]

X7R Dielectric

Part	Num	her l	l ist ·	P 1	9-20
i ait	INGILL				

●Ca	pacitanc	e chart	Sta	ndard Sp	ec. 💹 C	ptional S	pec.					
	Size A Code)	CM02 (01005)		CM05 (0402)		CM105 (0603)				CM21 (0805)		
Сара	Voltage(Vdc) citance(pF)	16	10	25	6.3	10	16	6.3	10	16	25	50
101	100											
151	150 220 330											
102	470 680 1000	A8										
152	1500 2200 3300											
103	4700 6800 10000		B3									
153	15000 22000 33000											
104	47000 68000 100000			C8								
105	220000 470000 1000000					B8	B8		B3		B8	6 F3 2
106	2200000 4700000 10000000				C8			F8		6 F8 2	F8	
	.0000000						1					

Size (EIA Code)			CM316 (1206)				CM32 (1210)	
Rated Voltage(Vdc) Capacitance(pF)	6.3	10	16	25	50	16	25	50
2200000 4700000 106 10000000 22000000	B8	К B5 Ø	B8	B8 ∦ B3 ∦	🛛 ВЗ 🖉	A2 A8	A8	A3

<Standard Capacitance Value>

Capacitance value of less than $0.1 \mu F\colon E6$ Series

Capacitance value of 0.1µF and larger : E3 Series

Please contact for capacitance value other than standard.

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for detail.

L : 0.6 ± 0.03 mm, W : 0.3 ± 0.03 mm, T : 0.3 ± 0.03 mm, Tan δ : 5.0% max.

			imension (mr	2)	Packaging											
Size	Dimension	U		")			φ 180 Ree					φ 330 Reel				
5126	Code	L	W	т	Code	Quantity	Taping Material	Taping Width	Cavity Pitch	Code	Quantity	Taping Material	Taping Width	Cavity Pitch		
02	A	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Р	40,000	Plastic	4mm	1mm	—	-	_	-	-		
02		0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	Н	20,000	Paper	8mm	2mm	N	80,000	Paper	8mm	2mm		
03	В	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	Q	30,000	Paper	8mm	1mm	W	150,000	Paper	8mm	1mm		
03		0.0 ± 0.03	0.5 ± 0.05	0.3 ± 0.03	Н	15,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm		
05	С	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Q	20,000	Paper	8mm	1mm	W	100,000	Paper	8mm	1mm		
05		1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	Н	10,000	Paper	8mm	2mm	N	50,000	Paper	8mm	2mm		
105	В	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm		
105	С	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	Т	4,000	Paper	8mm	4mm	L	10,000	Paper	8mm	4mm		
21	В	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm		
21	F	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	Т	3,000	Plastic	8mm	4mm	L	10,000	Plastic	8mm	4mm		
316	В	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm		
32	A	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	Т	1,000	Plastic	8mm	4mm	L	4,000	Plastic	8mm	4mm		

X7S Dielectric

Capacitance chart
 Optional Spec.

 $\begin{array}{c} 0.2 \pm 0.20 & 1.6 \pm 0.20 & 1.6 \pm 0.20 \\ 3.2 \pm 0.30 & 1.6 \pm 0.30 & 1.6 \pm 0.30 \end{array}$

Size (EIA Code)	CM316 (1206)
Rated Voltage(Vdc) Capacitance(pF)	100
105 1000000	
2200000 4700000 106 10000000	<u>ВЗ //</u> 2 СЗ //

С

Size

316

Two digits alphanumerics in capacitance chart denote dimensions and tan δ . Please refer to the above table for detail.

(Example) In case of "B3" for CM316 ; L : 3.2 \pm 0.20mm, W : 1.6 \pm 0.20mm, T : 1.6 \pm 0.20mm, T : 5.0% max.

2,000

Tan δ Code	Tan δ
3	5.0%max.

		in an sign (man						Pack	aging							
Dimension		imension (min	n)			φ 180 Reel					φ 330 Ree					
Code		10/	т	Codo	Quantity	Taping	Taping	Cavity	Codo	Quantity	Taping	Taping	Cavity			
	L	vv	1	Code	Quantity	Material	Width	Pitch	Code	Quantity	Material	Width	Pitch			
В	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	Т	2,500	Plastic	8mm	4mm	L	5,000	Plastic	8mm	4mm			
	Code	Code L	Code L W	Code L W T	Dimension T Code L W T Code	Dimension Code L W T Code Quantity	Dimension or 180 Ree Code L W T Code Quantity Taping Material	Dimension Operation Operation Operation Code L W T Code Quantity Taping Material Taping Width	Dimension Dimension (mm) \$	Dimension 0 0 0 0 0 0 0 Code L W T Code Quantity Taping Material Taping Width Cavity Pitch Code	Dimension (mm)	Dimension Dimension (mm) \$	Dimension Code L W T Code Quantity Taping Material Taping Width Taping Pitch Code Quantity Taping Material Taping Width Code Quantity Taping Material Taping Width Code Quantity Taping Material Taping Width			

Plastic

8mm

4mm

Tan δ Code	Tan δ
2	3.5%max.
3	5.0%max.
5	7.5%max.
8	12.5%max.

As of December 2018

Part Number List : P20

Test Conditions and Standards

Test Conditions and Specifications for Temperature Compensation Type (C Δ Characteristics) CM / CU Series

Test Items		Test Conditions	Specifications		
Capacitance V	alue (C)	Capacitance Frequency Volt	Within tolerance		
Q		C≤1000pF 1MHz ± 10% C>1000pF 1kHz ± 10% 0.5 to 5Vrms	C≥30pF : Q≥1000 C<30pF : Q≥400+20C		
Insulation Resistance (IR)		Measured after the rated voltage is applied for 1 minute at room ambient. The charge and discharge current of the capaci- tor must not exceed 50mA.	Over $10000M^{\Omega}$ or $500M^{\Omega} \cdot \mu F$, whichever is less		
Dielectric Resistance		Apply 3 times of the rated voltage for 1 to 5 seconds. The charge and discharge current of the capaci- tor must not exceed 50mA.	No problem observed		
Appearance		Microscope	No problem observed		
Termination St	rength	Apply a sideward force of 500g (5N) to a PCB- mounted sample. Apply 2N for 0201, and 1N for 01005 size.	No problem observed		
Bending Streng	gth	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds.	No significant damage at 1mm bent		
Vibration	Appearance	Vibration frequency: 10 to 55 (Hz) Amplitude: 1.5mm	No problem observed		
Test	ΔC	Sweeping condition: $10 \rightarrow 55 \rightarrow 10$ Hz/ 1 minute	Within Tolerance		
	Q	in X, Y and Z Directions: 2 hours each, 6 hours total.	C≥30pF : Q≥1000 C<30pF : Q≥400+20C		
Soldering	Appearance	Soak the sample in 260° C \pm 5 $^{\circ}$ C solder for 10 \pm 0.5 seconds and place in room ambient, and	No problem observed		
Heat Resistance	ΔC	measure after 24 \pm 2 hours.	Within \pm 2.5% or \pm 0.25pF, whichever is larger		
	Q	(Pre-heating conditions) Order Temperature Time	C≥30pF : Q≥1000 C<30pF : Q≥400+20C		
-	IR	1 80 to 100°C 2 minutes	Over 10000M Ω or 500M Ω $\cdot\mu F$ whichever is less		
	Withstanding Voltage	2 150 to 200℃ 2 minutes The charge and discharge current of the capaci- tor must not exceed 50mA for IR and withstand- ing voltage measurement.	Resist without problem		
Solderablity		Soaking condition Sn-3Ag-0.5Cu $245 \pm 5^{\circ}$ C 3 ± 0.5 sec. Sn63 Solder $235 \pm 5^{\circ}$ C 2 ± 0.5 sec.	Solder coverage : 90% min.		
Temperature	Appearance	(Cycle)	No problem observed		
Cycle	ΔC	Room temperature (3min.) →	Within \pm 2.5% or \pm 0.25pF, whichever is larger		
	Q	Lowest operation temperature (30min.) → Room temperature (3min.) →	C≥30pF : Q≥1000 C<30pF : Q≥400+20C		
	IR	Highest operation temperature(30min.)	Over 10000M Ω or 500M Ω \cdot $\mu F,$ whichever is less		
	Withstanding Voltage	After 5 cycles, measure after 24 \pm 2 hours. The charge and discharge current of the capaci- tor must not exceed 50mA for IR and withstand- ing voltage measurement.	Resist without problem		
Load	Appearance	After applying rated voltage for $500+12/-0$	No problem observed		
Humidity Test	ΔC	hours in pre-condition at 40°C \pm 2°C , humidity 90 to 95%RH, allow parts to stabilize for 24 \pm	Within \pm 7.5% or \pm 0.75pF, whichever is larger		
	Q	2 hours, at room temperature before measure- ment.	C≥30pF : Q≥200 C<30pF : Q≥100+10C/ 3		
	IR	The charge and discharge current of the capaci- tor must not exceed 50mA for IR measurement.	Over 500M Ω or 25M Ω + $\mu F,$ whichever is less		
High-	Appearance	After applying twice the rated voltage at the	No problem observed.		
Temperature with Loading	ΔC	temperature of 125 \pm 3°C for 1000+12/ – 0	Within \pm 3% or \pm 0.3pF, whichever is larger		
man Loading	Q	hours, measure the sample after 24 ± 2 hours. The charge and discharge current of the capacitor must not exceed 50mA for IR	C≥30pF : Q≥350 10pF <c<30pf 2<br="" :="" q≥275+5c="">C<10pF : Q≥200+10C</c<30pf>		
		measurement.	Over 1000MΩ or 50MΩ \cdot μF, whichever is less		

Please ask for individual specification for the hatched range in previous chart.

Test Conditions and Standards

Test Conditions and Specifications for High Dielectric Type (X5R, X7R)

CM / CT Series

Test	Items		Test Conditions		Specifications		
Capacitance V	alue (C)	Measure aft	er heat treatment		Within tolerance		
Tan δ		Capacitance Frequency Volt C≤10µF 1kHz ± 10% 1.0 ± 0.2Vrms C>10µF 120Hz ± 10% 0.5 ± 0.2Vrms			Refer to capacitance chart		
Insulation Resi	stance (IR)	Measured after the rated voltage is applied for 1 minute at room ambient. The charge and discharge current of the capacitor must not exceed 50mA.			Over 10000M Ω or 500M Ω \cdot $\mu F,$ whichever is less		
Dielectric Resi	stance	The charge	es of the rated voltage for and discharge current exceed 50mA.		No problem observed		
Appearance		Microscope			No problem observed		
Termination St	rength	note : 2N fo	d force of 500g (5N) to a PCI r 0201 size, and 1N fo eries with thickness of le	or 01005 size.	No problem observed		
Bending Streng	gth	time 10 seco	PCB: Fulcrum spacing: onds. eries with thickness of le		No significant damage at 1mm bent		
Vibration Test	Appearance		tial value after heat tre equency: 10 to 55 (Hz)		No problem observed		
	ΔC		tion: $10 \rightarrow 55 \rightarrow 10$ Hz/ 1 minu		Within tolerance		
	Tan δ		ours each, 6 hours total, ar neasure the sample after h		Within tolerance		
Soldering Heat	Appearance	Take the initial value after heat treatment. Soak the sample in 260 $^{\circ}$ C \pm 5 $^{\circ}$ C solder for 10			No problem observed		
Resistance	ΔC		nds and place in roon er heat treatment.	n ambient, and	Within \pm 7.5%		
	Tan ô	(Pre-heating	g conditions)		Within tolerance		
	IR	Order Temperature 1 80 to 100°C		Time 2 minutes	Over $10000M\Omega$ or $500M\Omega \cdot \mu F$, whichever is less		
	Withstanding Voltage	2 150 to 200°C 2 minutes The charge and discharge current of the capacitor must not exceed 50mA for IR and withstanding voltage measurement.			Resist without problem		
Solderablity		Soaking con Sn-3Ag-0 Sn63 Sold	.5Cu 245 ± 5℃		Solder coverage : 90% min.		
Temperature	Appearance		tial value after heat tre	eatment.	No problem observed		
Cycle	ΔC	(Cycle) Room tempe	erature (3min.) →		Within ± 7.5%		
	Tan ô	Lowest oper	ration temperature (30	lmin.) →	Within tolerance		
	IR		erature (3min.) → ration temperature(30	min)	Over $10000M\Omega$ or $500M\Omega \cdot \mu F$, whichever is less		
	Withstanding Voltage	After 5 cycle The charge an exceed 50mA f	es, measure after heat d discharge current of the c for IR and withstanding volta	t treatment. capacitor must not age measurement.	Resist without problem		
Load Humidity	Appearance		tial value after heat tre ng rated voltage for 50		No problem observed		
Test	ΔC	hours in pre	-condition at $40^{\circ}C \pm 2^{\circ}$ H, and place in room a	°C, humidity	Within ± 12.5%		
	Tanδ	measure the	e sample after heat tre	atment.	200% max. of initial value		
	IR	tor must not	and discharge current exceed 50mA for IR r	measurement.	Over 500M Ω or 25M Ω \cdot $\mu F,$ whichever is less		
High- Temperature	Appearance	After applyin	tial value after heat tre ng twice the rated volta	ge at the	No problem observed		
with Loading	ΔC		ation temperature for for a sure the sample after he		Within \pm 12.5%		
Loading	Tan δ	The charge tor must not	and discharge current	t of the capaci- measurement.	200% max. of initial value		
		tor must not exceed 50mA for IR measurement. Apply 1.5 times when the rated voltage is 10V or less. Applied voltages for respective products are indicated in the below chart.			Over 1000M Ω or 50M Ω $\cdot\mu F,$ whichever is less		

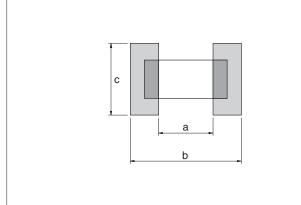
Heat treatment

Keep specimen at $150+0/-10^{\circ}$ for 1 hour, leave specimen at room ambient for 24 ± 2 hours.

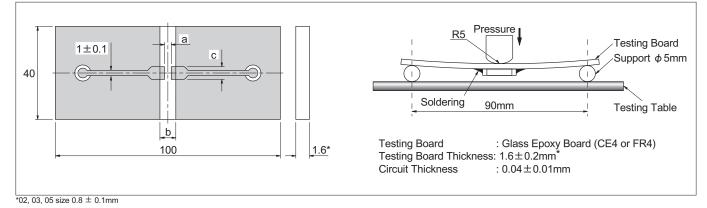
High-temperature with Loading Applied Voltage (Rated Voltage imes]

Applied Voltage	Rated Voltage	Products
× 1.3	6.3V	CM02X5R153-104, CM105X5R475, CT03X5R104
	16V	CM02X5R101-103, CM05X5R224, CM105X5R225, CM21X5R475-106, CM316X5R226, CM02X7R101-222,
	101	CM105X7R105, CM316X7R106, CM32X7R226, CT105X5R105, CT21X5R475
× 1.5	25V	CM03X5R332-103, CM105X5R105, CM21X5R225-475, CM316X5R106, CM32X5R106-226,
	250	CM05X7R104, CM21X7R105-225, CM316X7R475, CM32X7R106
	50V	CM21X5R105, CM32X5R106, CM32X7R106, CT21X5R225

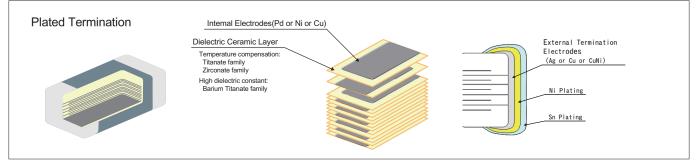
Please ask for individual specification for the hatched range in previous chart.



(Unit: mm)


Test Conditions and Standards

Substrate for Adhesion Strength Test, Vibration Test, Soldering Heat Resistance Test, Temperature Cycle Test, Load Humidity Test, High-Temperature with Loading Test.



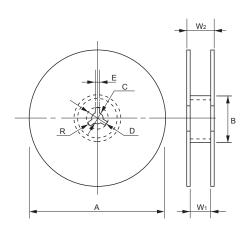
			(Unit: mm)
Size (EIA Code)	а	b	С
02 (01005)	0.15	0.50	0.20
03 (0201)	0.26	0.92	0.32
05 (0402)	0.4	1.4	0.5
105 (0603)	1.0	3.0	1.2
21 (0805)	1.2	4.0	1.65
316 (1206)	2.2	5.0	2.0
32 (1210)	2.2	5.0	2.9

Substrate for Bending Test

Structure

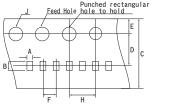
· Please contact your local Kyocera sales office or distributor for specifications not covered in this catalog.

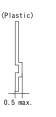
• Our products are continually being improved. As a result, the capacitance range of each series is subject to change without notice. Please contact sales representative to confirm compatibility with your application.



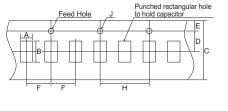
(Unit: mm)

Packaging Options Tape and Reel

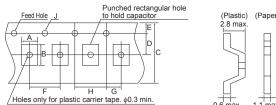

Reel

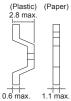


Code А В С D Reel 7-inch Reel 180 +0 - 2.0 (CODE: T, H, Q) 7-inch Reel 178 ± 2.0 φ60 min. 13 ± 0.5 21±0.8 (CODE: P) 13-inch Reel 330 ± 2.0 (CODE: L, N, W) Code Е W1 W2 R Reel 7-inch Reel 10.5 ± 1.5 16.5 max. (CODE: T, H, Q) 7-inch Reel 2.0 ± 0.5 6.95 ± 1.0 1.0 4.35 ± 0.3 (CODE: P) 13-inch Reel 9.5 ± 1.0 16.5 max. (CODE: L, N, W)

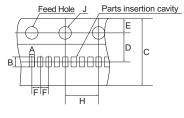

Carrier Tape

F=1mm (02 Size)




F=2mm (02, 03, 05 Size)

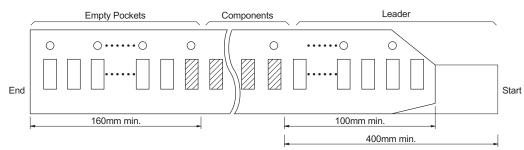
F=4mm (105, 21, 316, 32 Size)

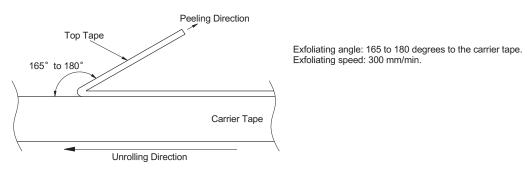

(Unit: mm)

Carrier Tape

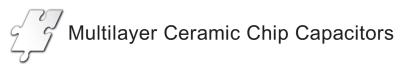
· · · · · · · · · · · · · · · · · · ·												
Size (EIA Code)	А	В	С	D	E	F	G	Н	J	Carrie Width	r Tape Material	
										wiath		
02 (01005)*	0.23 ± 0.02	0.43 ± 0.02	4.0 ± 0.08	1.8 ± 0.02	0.9 ± 0.05	1.0 ± 0.02		2.0 ± 0.04	0.8±0.04	4mm	Plastic	
02 (01005)*	0.25 ± 0.03	0.45 ± 0.03	8.0±0.3	3.5 ± 0.05	1.75±0.1	2.0 ± 0.05	_	4.0±0.1	1.5+0.1/-0	8mm	Paper	
03 (0201)*	0.37 ± 0.03	0.67+0.02	8.0+0.3/-0.1	3.5±0.05	1.75±0.1	1.0 ± 0.05		4.0 ± 0.05	1.5+0.1/-0	8mm	Paper	
03 (0201)	0.37 ± 0.03	0.07 ± 0.03	8.0±0.3	3.5 ± 0.05	1.75±0.1	2.0 ± 0.05		4.0±0.1	1.5+0.1/-0	011111	гареі	
	0.65±0.1		8.0+0.3/-0.1			1.0 ± 0.05	—	4.0 ± 0.05				
05 (0402)*	0.05 ± 0.1	1.15±0.1	8.0±0.3	3.5 ± 0.05	1.75±0.1	2.0±0.05		4.0±0.1	1.5+0.1/-0	8mm	Paper	
	0.75±0.1		0.0±0.3			2.0 ± 0.05	_	4.0±0.1				
105 (0603)	1.0 ± 0.2	1.8±0.2	8.0±0.3	3.5 ± 0.05	1.75±0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Paper	
21 (0905)	1.5±0.2	2.3±0.2	8.0±0.3	3.5±0.05	1.75±0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Paper	
21 (0805)	1.5 - 0.2	2.3±0.2	0.0±0.3	3.5 - 0.05	1.75±0.1	4.0 ± 0.1	2.0 - 0.05	4.0±0.1	1.5+0.1/-0	8mm	Plastic	
246 (4206)	20402	26402	8.0±0.3	3.5 ± 0.05	1 75 + 0 1	40±04	2.0 ± 0.05	4.0±0.1	1 5+0 1/0	8mm	Paper	
316 (1206)	2.0±0.2	3.6±0.2	0.0±0.3	3.3±0.05	1.75±0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Plastic	
32 (1210)	2.9±0.2	3.6±0.2	8.0±0.3	3.5 ± 0.05	1.75±0.1	4.0±0.1	2.0 ± 0.05	4.0±0.1	1.5+0.1/-0	8mm	Plastic	
* Option												

F=1mm (02, 03, 05 Size)




Packaging Options

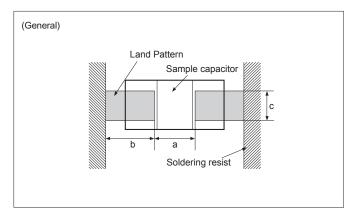
Detail of leader and trailer


Adhesive tape

- 1) The exfoliative strength when peeling off the top tape from the carrier tape by the method of the following figure shall be `0.1 to 0.7N. `02 Size: 0.1 to 0.5N
- 2) When the top tape is peeled off, the adhesive stays on the top tape.
- 3) Chip capacitors will be in a state free without being stuck on the thermal adhesive tape.

Carrier tape

- 1) Chip will not fall off from carrier tape or carrier tape will not be damaged by bending than within a radius of 25mm.
- 2) The chip are inserted continuously without any empty pocket.
- 3) Chip will not be mis-mounted because of too big clearance between components and cavity. Also the waste of carrier tape will not fill a nozzle hole of mounting machine.



Surface Mounting Information

Dimensions for recommended typical land

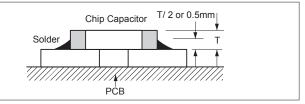
Since the amount of solder (size of fillet) to be used has direct influence on the capacitor after mounting, the sufficient consideration is necessary.

When the amounts of solder is too much, the stress that a capacitor receives becomes larger. It may become the cause of a crack in the capacitor. When the land design of printed wiring board is considered, it is necessary to set up the form and size of land pattern so that the amount of solder is suitable.

Design of printed circuit and Soldering

capacitor.

The recommended fillet height shall be 1/2 of the thickness of


resist strike so that it may become the exclusive land of each

capacitors or 0.5mm. When mounting two or more capacitors in the common land, it is necessary to separate the land with the solder

General					(Unit: mm			
Size	Dime	nsion	Recommended land dimension					
(EIA Code)	L	W / T	а	b	с			
02 (01005)	0.4 ± 0.02	0.2 ± 0.02	0.13 to 0.20	0.12 to 0.18	0.20 to 0.23			
	0.6 ± 0.03	0.3 ± 0.03	0.20 to 0.25	0.25 to 0.35	0.30 to 0.40			
03 (0201)	0.6 ± 0.05	0.3 ± 0.05	0.20 10 0.25	0.25 10 0.35	0.30 10 0.40			
03 (0201)	0.6 ± 0.09	0.3 ± 0.09	0.23 to 0.30	0.25 to 0.35	0.30 to 0.45			
	0.6 ± 0.10	0.3 ± 0.10	0.23 10 0.30	0.23 10 0.33	0.30 10 0.40			
	1.0 ± 0.05	0.5 ± 0.05	0 30 to 0 50	0.35 to 0.45	0.40 to 0.60			
	1.0 ± 0.07	0.5 ± 0.07	0.30 10 0.30	0.33 10 0.43	0.40 10 0.00			
05 (0402)	1.0 ± 0.10	0.5 ± 0.10	0 30 to 0 50	0.40 to 0.50	0 50 to 0 75			
03 (0402)	1.0 ± 0.10	0.5 ± 0.20	0.30 10 0.30	0.40 10 0.30	0.00 10 0.11			
	1.0 ± 0.15	0.5 ± 0.15	0.40 to 0.60	0 40 to 0 50	0 50 to 0 75			
	1.0 ± 0.20	0.5 ± 0.20	0.40 10 0.00	0.40 10 0.30	0.30 10 0.7			
	1.6 ± 0.10	0.8 ± 0.10	0.70 to 1.00	0.80 to 1.00	0.60 to 0.90			
105 (0603)	1.6 ± 0.15	0.8 ± 0.15	0.80 to 1.00	0.80 to 1.00	0.80 to 1.10			
	1.6 ± 0.20	0.8 ± 0.20	0.40 to 0.60 0.40 to 0.50 0. 0.70 to 1.00 0.80 to 1.00 0. 0.80 to 1.00 0.80 to 1.00 0. 1.00 to 1.30 1.00 to 1.20 1.	0.00 10 1.10				
	2.0 ± 0.10	1.25 ± 0.10	1.00 to 1.30	1.00 to 1.20	1.00 to 1.45			
21 (0805)	2.0 ± 0.15	1.25 ± 0.15	1 00 to 1 30	1.00 to 1.20	1 25 to 1 58			
	2.0 ± 0.20	1.25 ± 0.20	1.00 to 1.30	1.00 10 1.20	1.25 10 1.50			
	3.2 ± 0.20	1.6 ± 0.15	2.10 to 2.50	1.10 to 1.30	1.40 to 1.90			
316 (1206)	3.2 ± 0.20	1.6 ± 0.20	2 10 to 2 50	1.10 to 1.30	1 60 to 2 00			
	3.2 ± 0.30	1.6 ± 0.30	2.10102.00	1.10 10 1.30	1.00 10 2.00			
32 (1210)	3.2 ± 0.30	2.5 ± 0.20	2.10 to 2.50	1.10 to 1.30	1.90 to 2.80			

* Recommended land dimensions may differ depending on dimensional tolerance.

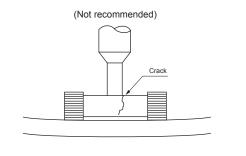
Ideal Solder Height

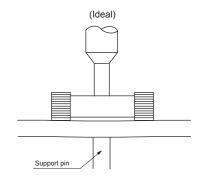
Item	Not recommended example	Recommended example/ Separated by solder
Multiple parts mount		Solder resist
Mount with leaded parts	Leaded parts	Solder resist Leaded parts
Wire soldering after mounting	Soldering iron Wire	Solder resist
Overview	Solder resist	Solder resist



Surface Mounting Information

Mounting Design


The chip could crack if the PCB warps during processing after the chip has been soldered.


Recommended chip position on PCB to minimize stress from PCB warpage

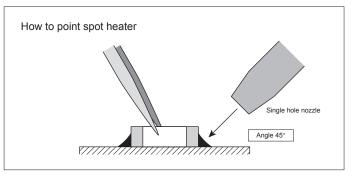
Actual Mounting

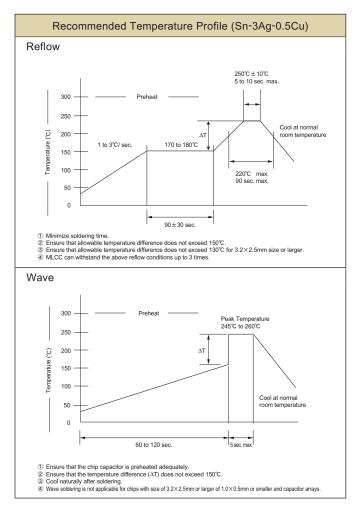
- 1) If the position of the vacuum nozzle is too low, a large force may be applied to the chip capacitor during mounting, resulting in cracking.
- 2) During mounting, set the nozzle pressure to a static load of 1 to 3 N.
- 3) To minimize the shock of the vaccum nozzle, provide a support pin on the back of the PCB to minimize PCB flexture.

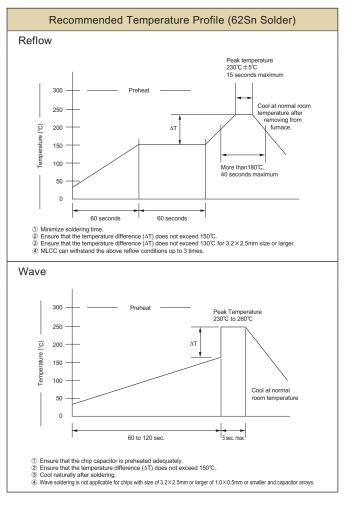
4) Bottom position of pick up nozzle should be adjusted to the top surface of a substrate which camber is corrected.

Resin Mold

- 1) If a large amount of resin is used for molding the chip, cracks may occur due to contraction stress during curing. To avoid such cracks, use a low shrinkage resin.
- 2) The insulation resistance of the chip will degrade due to moisture absorption. Use a low moisture absorption resin.
- 3) Check carefully that the resin does not generate a decomposition gas or reaction gas during the curing process or during normal storage. Such gases may crack the chip capacitor or damage the device itself.


Surface Mounting Information


Soldering Method


- 1) Ceramic is easily damaged by rapid heating or cooling. If some heat shock is unavoidable, preheat enough to limit the temperature difference (Delta T) to within 150 degree Celsius.
- 2) The product size 1.6 \times 0.8mm to 3.2 \times 1.6mm can be used in reflow and wave soldering, and the product size of bigger than 3.2 \times 1.6mm, or smaller than 1.6 imes 0.8mm can be used in reflow.
- Circuit shortage and smoking can be created by using capacitors which are used neglecting the above caution.
- 3) Please see our recommended soldering conditions.
- 4) In case of using Sn-Zn Solder, please contact us in advance.
- 5) The following condition is recommended for spot heater application.

· Recommended spot heater condition

Item	Condition
Distance	5mm min.
Angle	45°
Projection Temp.	400℃ max.
Flow rate	Set at the minimum
Nozzle diameter	2ϕ to 4ϕ (Single hole type)
Application time	10 sec. max. (1206 and smaller) 30 sec.max. (1210 and larger)

Soldering iron

1) Temperature of iron chip

2) Wattage

- 3) Tip shape of soldering iron ϕ 3.0mm max.
- 4) Soldering Time
- 80W max.

1206 and smaller 350°C max. 5) Cautions a) Pre-heating is necessary rapid heating must be avoided.

1210 and larger 280°C max.

- 3 sec. max.

Delta T≤150°C (product size of bigger than 3.2 × 1.6mm. Delta T≤130°C) b) Avoid direct touching to capacitors.

c) Avoid rapid cooling after soldering. Natural cooling is recommended. *Consult as if it is difficult to keep the temperature 280°C max. for 1210 and larger MLCC'S.

> CAT9H1812GHHK2786E As of December 2018

Precautions


Circuit Design

- 1. Once application and assembly environments have been checked, the capacitor may be used in conformance with the rating and performance which are provided in both the catalog and the specifications. Use exceeding that which is specified may result in inferior performance or cause a short, open, smoking, or flaming to occur, etc.
- 2. Please consult the manufacturer in advance when the capacitor is used in devices such as: devices which deal with human life, i.e. medical devices; devices which are highly public orientated; and devices which demand a high standard of liability. Accident or malfunction of devices such as medical devices, space equipment and devices having to do with atomic power could generate grave consequence with respect to human lives or, possibly, a portion of the public. Capacitors used in these devices may require high reliability design different from that of general purpose capacitors.
- 3. Please use the capacitors in conformance with the operating temperature provided in both the catalog and the specifications. Be especially cautious not to exceed the maximum temperature. In the situation the maximum temperature set forth in both the catalog and specifications is exceeded, the capacitor's insulation resistance may deteriorate, power may suddenly surge and short-circuit may occur. The capacitor has a loss, and may self-heat due to equivalent series resistance when alternating electric current is passed therethrough. As this effect becomes especially pronounced in high frequency circuits, please exercise caution. When using the capacitor in a (self-heating) circuit, please make sure the surface of the capacitor remains under the maximum temperature for usage. Also, please make certain temperature rises remain below 20°C.
- 4. Please keep voltage under the rated voltage which is applied to the capacitor. Also, please make certain the peak voltage remains below the rated voltage when AC voltage is super-imposed to the DC voltage.
 In the situation where AC or pulse voltage is employed, ensure average peak voltage does not exceed the rated voltage.
 Exceeding the rated voltage provided in both catalog and specifications may lead to defective withstanding voltage or, in worst case situations, may cause the capacitor to smoke or flame.
- 5. When the capacitor is to be employed in a circuit in which there is continuous application of a high frequency voltage or a steep pulse voltage, even though it is within the rated voltage, please inquire to the manufacturer. In the situation the capacitor is to be employed using a high frequency AC voltage or a extremely fast rising pulse voltage, even though it is within the rated voltage, it is possible capacitor reliability will deteriorate.
- 6. It is a common phenomenon of high-dielectric products to have a deteriorated amount of static electricity due to the application of DC voltage. Due caution is necessary as the degree of deterioration varies depending on the quality of capacitor materials, capacity, as well as the load voltage at the time of operation.
- Do not use the capacitor in an environment where it might easily exceed the respective provisions concerning shock and vibration specified in the catalog and specifications.
 In addition, it is a common piezo phenomenon of high dielectric products to have some voltage due to vibration or to have noise due to voltage change. Please contact sales in such case.
- 8. If the electrostatic capacity value of the delivered capacitor is within the specified tolerance, please consider this when designing the respective product in order that the assembled product function appropriately.
- 9. Please contact us upon using conductive adhesives.

Storage

- 1. If the component is stored in minimal packaging (a heat-sealed or zippered plastic bag), the bag should be kept closed. Once the bag has been opened, reseal it or store it in a desiccator.
- 2. Keep storage place temperature + 5 to + 40 degree C, humidity 20 to 70% RH. See JIS C 60721-3-1, class 1K2 for other climatic conditions.
- 3. The storage atmosphere must be free of corrosive gas such as sulfur dioxide and chlorine. Also, avoid exposing the product to saline moisture. If the product is exposed to such atmospheres, the terminals will oxidize and solderability will be effected.
- 4. Precautions 1) to 3) apply to chip capacitors packaged in carrier tapes.
- 5. The solderability is assured for 6 months from our shipping date if the above storage precautions are followed.

Safety application guideline and detailed information of electrical properties are also provided in Kyocera web site; URL: https://global.kyocera.com/prdct/electro/



General CM02 Series Size (JIS Code):01005(0402) # Packaging Code (Packaging quantity): H(20,000pcs.) / N(80,000pcs.) / P(40,000pcs.)

Dielectric code	Capacitance	ance :Tolerance	Voltage	Part Number	Q	Dimension			# Packaging Code
CΔ	Capacitance		[V]	Fait Nulliber		L[mm]	W[mm]	T[mm]	(quantity)
	1pF			CM02C ∆ 1R0 □ 25A#	420	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	1.5pF			CM02C ∆ 1R5 □ 25A#	430	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	2pF		25	CM02C ∆ 2R0 □ 25A#	440	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	3pF	B: ± 0.1pF / C: ± 0.25pF	25	CM02C ∆ 3R0 □ 25A#	460	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	4pF			CM02C ∆ 4R0 □ 25A#	480	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	5pF			CM02C ∆ 5R0 □ 25A#	500	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	6pF			CM02C ∆ 6R0 □ 25A#	520	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	7pF		05	CM02C ∆ 7R0 □ 25A#	540	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	8pF	C: \pm 0.25pF / D: \pm 0.5pF	25	CM02C ∆ 8R0 □ 25A#	560	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	9pF			CM02C ∆ 9R0 □ 25A#	580	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	10pF	J: ± 5% / K: ± 10%	25	CM02C △ 100 □ 25A#	600	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	12pF			CM02C ∆ 120 □ 25A#	640	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	15pF			CM02C △ 150 □ 25A#	700	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
CG/CH	18pF			CM02C ∆ 180 □ 25A#	760	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	22pF			CM02C ∆ 220 □ 25A#	840	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	27pF			CM02C ∆ 270 □ 16A#	940	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	33pF			CM02C ∆ 330 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	39pF			CM02C ∆ 390 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	47pF			CM02C ∆ 470 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	56pF			CM02C ∆ 560 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	68pF	1 1 50/ /1/ 1 400/	10	CM02C ∆ 680 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	82pF	J: ± 5% / K: ± 10%	16	CM02C ∆ 820 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	100pF			CM02C △ 101 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	120pF			CM02C ∆ 121 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	150pF			CM02C ∆ 151 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	180pF			CM02C ∆ 181 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	220pF			CM02C ∆ 221 □ 16A#	1000	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P

General CM03 Series Size (JIS Code): 0201(0603) # Packaging Code (Packaging quantity): H(15,000pcs.) / N(50,000pcs.) / Q(30,000pcs.) / W(150,000pcs.)

	Capacitance	itance	Voltage	Part Number	Q		-	# Packaging Code	
	Capacitance		[V]		<u> </u>	L[mm]	W[mm]	T[mm]	(quantity)
	1pF			CM03C ∆ 1R0 □ 50A#	420	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	1.5pF			CM03C ∆ 1R5 □ 50A#	430	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	2pF		50	CM03C ∆ 2R0 □ 50A#	440	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	3pF	B: ± 0.1pF / C: ± 0.25pF	50	CM03C ∆ 3R0 □ 50A#	460	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	4pF			CM03C ∆ 4R0 □ 50A#	480	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	5pF			CM03C ∆ 5R0 □ 50A#	500	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	6pF			CM03C ∆ 6R0 □ 50A#	520	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	7pF		50	CM03C ∆ 7R0 □ 50A#	540	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	8pF	C: ± 0.25pF / D: ± 0.5pF		CM03C ∆ 8R0 □ 50A#	560	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	9pF			CM03C ∆ 9R0 □ 50A#	580	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	10pF			CM03C ∆ 100 □ 50A#	600	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
CG/CH	12pF			CM03C ∆ 120 □ 50A#	640	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	15pF			CM03C ∆ 150 □ 50A#	700	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	18pF			CM03C ∆ 180 □ 50A#	760	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	22pF			CM03C ∆ 220 □ 50A#	840	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	27pF			CM03C ∆ 270 □ 50A#	940	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	33pF	J: ± 5% / K: ± 10%	50	CM03C ∆ 330 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	39pF			CM03C ∆ 390 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	47pF			CM03C ∆ 470 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	56pF			CM03C ∆ 560 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	68pF			CM03C ∆ 680 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	82pF			CM03C ∆ 820 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	100pF			CM03C ∆ 101 □ 50A#	1000	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W

General CM02 Series Size (JIS Code): 01005(0402) # Packaging Code (Packaging quantity): H(20,000pcs.) / N(80,000pcs.) / P(40,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage	Part Number	Tan δ		# Packaging Code		
Dielectric code	Capacitance		[V]		[%]	L[mm]	W[mm]	T[mm]	(quantity)
-	100pF			CM02X5R101 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	150pF			CM02X5R151 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	220pF			CM02X5R221 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	330pF			CM02X5R331 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	470pF			CM02X5R471 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	680pF			CM02X5R681 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	1nF	K: ± 10% / M: ± 20%	16	CM02X5R102 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	1.5nF			CM02X5R152 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	2.2nF			CM02X5R222 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	3.3nF			CM02X5R332 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
VED	4.7nF			CM02X5R472 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
X5R	6.8nF			CM02X5R682 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	10nF			CM02X5R103 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	15nF	K: ± 10% / M: ± 20%	6.3	CM02X5R153 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	22nF			CM02X5R223 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	33nF			CM02X5R333 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	47nF			CM02X5R473 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	68nF			CM02X5R683 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	100 5		10	CM02X5R104 10A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	100nF	K: ± 10% / M: ± 20%	6.3	CM02X5R104 06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	220nF	M + 000/		CM02X5R224M06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	470nF	M: ± 20%	6.3	CM02X5R474M06A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	100pF			CM02X7R101 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	150pF			CM02X7R151 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	220pF			CM02X7R221 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	330pF			CM02X7R331 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
X7R	470pF	K: ± 10% / M: ± 20%	16	CM02X7R471 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	680pF			CM02X7R681 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	1nF			CM02X7R102 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	1.5nF			CM02X7R152 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P
	2.2nF			CM02X7R222 16A#	12.5	0.4 ± 0.02	0.2 ± 0.02	0.2 ± 0.02	H/N/P

General CM03 Series Size (JIS Code): 0201(0603) # Packaging Code (Packaging quantity): H(15,000pcs.) / N(50,000pcs.) / Q(30,000pcs.) / W(150,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage	Part Number	Tan δ			# Packaging Code	
Dicioculic code			[V]		[%]	L[mm]	W[mm]	T[mm]	(quantity)
	3.3nF			CM03X5R332 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	4.7nF	K: ± 10% / M: ± 20%	25	CM03X5R472 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	6.8nF	K. ± 10%/1WI. ± 20%	20	CM03X5R682 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	10nF			CM03X5R103 25A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	15nF			CM03X5R153 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	22nF			CM03X5R223 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	33nF	K: \pm 10% / M: \pm 20%	10	CM03X5R333 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	47nF			CM03X5R473 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
X5R	68nF			CM03X5R683 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
AUK	100nF			CM03X5R104 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	220nF			CM03X5R224 10A#	10.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	470nF	K: ± 10% / M: ± 20%	6.3	CM03X5R474 06A#	12.5	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	1µF	M: ± 20%	16	CM03X5R105M16AH	20.0	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
	ιμг		6.3	CM03X5R105M06A#	12.5	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	H/N/Q/W
			10	CM03X5R225M10AH	15.0	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
	2.2µF	M: ± 20%	6.3	CM03X5R225M06AH	12.5	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
			0.5	CM03X5R225M06A#035	12.5	0.6 ± 0.05	0.3 ± 0.05	0.3 ± 0.05	H/N/Q/W
	4.7µF	M: ± 20%	4	CM03X5R475M04AH	12.5	0.6 ± 0.09	0.3 ± 0.09	0.3 ± 0.09	Н
	3.3nF			CM03X7R332 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
X7R	4.7nF	K: ± 10% / M: ± 20%	10	CM03X7R472 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	6.8nF	N. ± 10 /0 / WI. ± 20 /0	10	CM03X7R682 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W
	10nF			CM03X7R103 10A#	5.0	0.6 ± 0.03	0.3 ± 0.03	0.3 ± 0.03	H/N/Q/W

General CM05 Series Size (JIS Code): 0402(1005) # Packaging Code (Packaging quantity): H(10,000pcs.) / N(50,000pcs.) / Q(20,000pcs.) / W(100,000pcs.)

Dielectric code	Ormeritener	□:Tolerance	Voltage	Part Number	Tan δ			# Packaging	
Dielectric code	Capacitance		[V]	Part Number	[%]	L[mm]	W[mm]	T[mm]	Code (quantity)
	100nF	K: ± 10% / M: ± 20%	25	CM05X5R104 25A#	5.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	220nF	K: ± 10% / M: ± 20%	16	CM05X5R224 16A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	470nF	K: ± 10% / M: ± 20%	10	CM05X5R474 🗆 10A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
			35	CM05X5R105 35A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	1µF	K: \pm 10% / M: \pm 20%	25	CM05X5R105 25A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
	ιμг		16	CM05X5R105 🗆 16A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
			10	CM05X5R105 🗆 10A#	10.0	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
X5R	2.2µF	K: \pm 10% / M: \pm 20%	16	CM05X5R225 🗆 16A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
7,517	z.zµr		10	CM05X5R225 10A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W
		M: ± 20%	25	CM05X5R475M25AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
	4.7µF		16	CM05X5R475M16AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
			10	CM05X5R475M10AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
	10µF	M: ± 20%	6.3	CM05X5R106M06AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
	15.uE	5μF M: ± 20%	6.3	CM05X5R156M06A#	12.5	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	H/N
	22µF		4	CM05X5R156M04A#	12.5	1.0 ± 0.15	0.5 ± 0.15	0.5 ± 0.15	H/N
		M: ± 20%	4	CM05X5R226M04AH	12.5	1.0 ± 0.20	0.5 ± 0.20	0.5 ± 0.20	Н
X7R	100nF	K: ± 10% / M: ± 20%	25	CM05X7R104 25A#	12.5	1.0 ± 0.05	0.5 ± 0.05	0.5 ± 0.05	H/N/Q/W

General CM105 Series Size (JIS Code): 0603(1608) # Packaging Code (Packaging quantity): T(4,000pcs.) / L(10,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage [V]	Part Number	Tan δ		# Packaging		
					[%]	L[mm]	W[mm]	T[mm]	Code (quantity)
	1µF	K: ± 10% / M: ± 20%	25	CM105X5R105 25A#	12.5	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	T/L
	2.2µF	K: ± 10% / M: ± 20%	16	CM105X5R225 🗆 16A#	12.5	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L
X5R	4.7µF	K: \pm 10% / M: \pm 20%	25	CM105X5R475 🗆 25A#	12.5	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L
			10	CM105X5R475 🗆 10A#	12.5	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	T/L
	10µF	K: ± 10% / M: ± 20%	25	CM105X5R106 25A#	15.0	1.6 ± 0.20	0.8 ± 0.20	0.8 ± 0.20	T/L
	1uF	K: \pm 10% / M: \pm 20%	16	CM105X7R105 🗆 16A#	12.5	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L
X7R	ιμ ι		10	CM105X7R105 10A#	12.5	1.6 ± 0.10	0.8 ± 0.10	0.8 ± 0.10	T/L
	2.2µF	K: ± 10% / M: ± 20%	6.3	CM105X7R225 06A#	12.5	1.6 ± 0.15	0.8 ± 0.15	0.8 ± 0.15	T/L

General CM21 Series Size (JIS Code) : 0805(2012) # Packaging Code (Packaging quantity) : T(3,000pcs.) / L(10,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage	Part Number	Tan δ			# Packaging Code	
Dielectric code	Capacitance		[V]	Fait Number	[%]	L[mm]	W[mm]	T[mm]	(quantity)
	1µF	K: ± 10% / M: ± 20%	50	CM21X5R105 50A#	12.5	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	ιμr	R. ± 10%/14. ± 20%	25	CM21X5R105 25A#	5.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	2.2µF	K: ± 10% / M: ± 20%	25	CM21X5R225 25A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
X5R —	2.2µr	R. ± 10% / WI. ± 20%	16	CM21X5R225 16A#	5.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	4.7µF	K: \pm 10% / M: \pm 20%	25	CM21X5R475 25A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
			16	CM21X5R475 16A#	12.5	2.0 ± 0.15	1.25 ± 0.15	1.25 ± 0.15	T/L
			10	CM21X5R475 10A#	7.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
	10µF	K: ± 10% / M: ± 20%	16	CM21X5R106 16A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
		K: ± 10% / M: ± 20%	50	CM21X7R105 50A#	5.0	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	1µF		25	CM21X7R105 25A#	12.5	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
X7R			10	CM21X7R105 10A#	5.0	2.0 ± 0.10	1.25 ± 0.10	1.25 ± 0.10	T/L
A/K	2.2µF	K: ± 10% / M: ± 20%	25	CM21X7R225 25A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	4.7µF	K: ± 10% / M: ± 20%	16	CM21X7R475 🗆 16A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L
	10µF	K: ± 10% / M: ± 20%	6.3	CM21X7R106 06A#	12.5	2.0 ± 0.20	1.25 ± 0.20	1.25 ± 0.20	T/L

General CM316 Series Size (JIS Code): 1206(3216) # Packaging Code (Packaging quantity): T(2,500pcs.) / L(5,000pcs.)

Dielectric code	Ormeritener	□:Tolerance	Voltage [V] Part Number	Tan δ			# Packaging Code		
Dielectric code	Capacitance			Part Number	[%]	L[mm]	W[mm]	T[mm]	(quantity)
	2.2µF	K: ± 10% / M: ± 20%	100	CM316X5R225 100A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	2.2µF	K. ± 10% / WI. ± 20%	25	CM316X5R225 25A#	5.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
	4.7µF	K: ± 10% / M: ± 20%	50	CM316X5R475 50A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	4.7µF	K: ± 10% / M: ± 20%	25	CM316X5R475 25A#	5.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
X5R	10µF	K: \pm 10% / M: \pm 20%	25	CM316X5R106 25A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
			16	CM316X5R106 16A#	5.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
			10	CM316X5R106 10A#	7.0	3.2 ± 0.20	1.6 ± 0.15	1.6 ± 0.15	T/L
	22µF	K: ± 10% / M: ± 20%	16	CM316X5R226 16A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	ZZHF	K. ± 10%/101. ± 20%	6.3	CM316X5R226 06A#	7.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	4.7uF	K: ± 10% / M: ± 20%	50	CM316X7R475 50A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	4.7µr		25	CM316X7R475 25A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
X7R	10uF	K: ± 10% / M: ± 20%	25	CM316X7R106 25A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	торг		16	CM316X7R106 16A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	22UE	K: ± 10% / M: ± 20%	10	CM316X7R226 10A#	7.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
	22µF		6.3	CM316X7R226 06A#	12.5	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L
X7S	2.2µF	K: ± 10% / M: ± 20%	100	CM316X7S225 100A#	5.0	3.2 ± 0.20	1.6 ± 0.20	1.6 ± 0.20	T/L

General CM316 Series Size (JIS Code) : 1206(3216) # Packaging Code (Packaging quantity) : T(2,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage [V]	Part Number	Tan δ [%]	Dimension			# Packaging Code
Dielectric code						L[mm]	W[mm]	T[mm]	(quantity)
X7S	4.7µF	K: ± 10% / M: ± 20%	100	CM316X7S475 100AT	5.0	3.2 ± 0.30	1.6 ± 0.30	1.6 ± 0.30	Т

General CM32 Series Size (JIS Code) : 1210(3225) # Packaging Code (Packaging quantity) : T(1,000pcs.) / L(4,000pcs.)

Dielectric code	Capacitance	□:Tolerance	Voltage [V]	Part Number	Tan δ		# Packaging		
				Part Number	[%]	L[mm]	W[mm]	T[mm]	Code (quantity)
	4.7µF	K: ± 10% / M: ± 20%	25	CM32X5R475 25A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
		K: ± 10% / M: ± 20%	50	CM32X5R106 50A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	10µF		25	CM32X5R106 25A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
X5R			16	CM32X5R106 16A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
ADK	22µF	K: ± 10% / M: ± 20%	25	CM32X5R226 25A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
			16	CM32X5R226 16A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
			10	CM32X5R226 10A#	7.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	47µF	K: ± 10% / M: ± 20%	6.3	CM32X5R476 06A#	7.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	4.7µF	K: ± 10% / M: ± 20%	16	CM32X7R475 16A#	2.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
X7R	10µF	K: \pm 10% / M: \pm 20%	50	CM32X7R106 50A#	5.0	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
			25	CM32X7R106 25A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L
	22µF	K: ± 10% / M: ± 20%	16	CM32X7R226 16A#	12.5	3.2 ± 0.30	2.5 ± 0.20	2.5 ± 0.20	T/L

- 1. Specifications described in this catalog are for references. Products specifications shall be based on written documents agreed by each party.
- 2. Contents in this catalog are subject to change without notice. It is recommended to confirm the latest information at the time of usage. Also, Kyocera Electronic Components Catalog is revised once a year. We may not be able to accept requests based on old catalogs.
- 3. Products in this catalog are intended to be used in general electronic equipment such as office equipment, audio and visual equipment, communication equipment, measurement instrument and home appliances. It is absolutely recommended to consult with our sales representatives in advance upon planning to use our products in applications which require extremely high quality and reliability such as aircraft and aerospace equipment, traffic systems, safety systems, power plant and medical equipment including life maintenance systems.
- 4. Even though we strive for improvements of quality and reliability of products, it is requested to design with enough safety margin in equipment or systems in order not to threaten human lives directly or damage human bodies or properties by an accidental result of products.
- 5. It is requested to design based on guaranteed specifications for such as maximum ratings, operating voltage and operating temperature. It is not the scope of our guarantee for unsatisfactory results due to misuse or inadequate usage of products in the catalog.
- 6. Operation summaries and circuit examples in this catalog are intended to explain typical operation and usage of the product. It is recommended to perform circuit and assembly design considering surrounding conditions upon using products in this catalog.
- 7. Technical information described in this catalog is meant to explain typical operations and applications of products, and it is not intended to guarantee or license intellectual properties or other industrial rights of the third party or Kyocera.
- 8. Trademarks, logos and brand names used in this catalog are owned by Kyocera or the corresponding third party.
- 9. Certain products in this catalog are subject to the Foreign Exchange and Foreign Trade Control Act of Japan, and require the license from Japanese Government upon exporting the restricted products and technical information under the law. Besides, it is requested not to use products and technical information in the catalog for the development and/or manufacture of weapons of mass destruction or other conventional weapons, nor to provide them to any third party with the possibility of having such purposes.
- 10. It is prohibited to reprint and reproduce a part or whole of this catalog without permission.
- 11. Contents described herein are as of December 2018.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kyocera:

KNH10C224DA20TS KNH21C473DA3TS KNH16C105DB5TS KNH16C104DA5TS KNH21C106DA3TS KNH21104-3AA CM21X5R105K50AT CM316X7R106K16AT CM21X5R225K16AT CM316X7S226K06AT CM05X6S105K06AH-HE CM05X6T475M06AH CM05X7S225M04AH065 CM05X7T105K06AH-HE CM21X5R105K25AT CM21X6S226M10AT CM105X7R105K16ATH CM21X7R105M10AT CM21X7T226M06AT CM21X5R106K16AT CM316X5R226K06AT CM105X5R225K16AT CM105X6S105K25ATH CM105X7R105K25AT CM21X5R475K16AT CM21X5R225K25AT CM105X7R225K06AT CM21X5R475K25AT CM316X5R106K16AT CM316X5R226K16AT CM105X7T106M06AT CM21X6S226M06AT KNH21C473DA3T CM105X5R105K25AT CM105X5R475K10AT CM21X5R475K10AT CM316X5R475K25AT CM316X5R106K10AT CM105X6S106M06AT CM105X6T226M04AT CM105X7R105K10AT CM21X7R105K25AT KNH21473-3AA KNH21C104DA3TS KNH21C105DA3T KNH10C474DA20TS KNH21C105DA3TS