VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.					Page	number	1 / 14
File name	ile name Ultra Micro Multi-layer Ceramic Chip Capacitor			File t	ype	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level	External public documents		С	Date	2021-11-05

1. Purpose versus Application characteristic	105
--	-----

The specifications are applicable to Ultra Micro Multi-layer Ceramic Chip Capacitor (MLCC): ■ Universal; □ Automotive Grade; 2. The term / Definition:: 2.1 Structural design classification: □General; ■ Ultra Micro; □ High Capacitance; □ High-Q; ☐ High-voltage 2.2 Chip Size: ■01005、■0201、□0402、□0603、□0805、□1206、___(Others); 2.3 Capacitance range: 0.1pF~2.2μF; 2.4 Voltage range: $4V \sim 50V$; 2.5 Type of Dielectrics: ■C0G、■X7R、■X5R、■Y5V、■X6S、■X7S、■X6T、■X7T、 ____(Others);

ADD: Viiyong Hi-Tech Park, No.1 Chuangye 2nd Road, Shuangdong Sub-district, 527200, Luoding City, Guangdong

Province, P. R. China

Postcode: 527200 TEL: 0766-3810639 FAX: 0766-3810639

Mark: The product specification is only for reference of design selection, not used as the basis for delivery

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.					Page	number	2 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor			File t	ype	Product	Specification	
Issued No.	SGVX-CCG202111	Confidentiality level	External public documents		С	Date	2021-11-05

3. Part Number System:

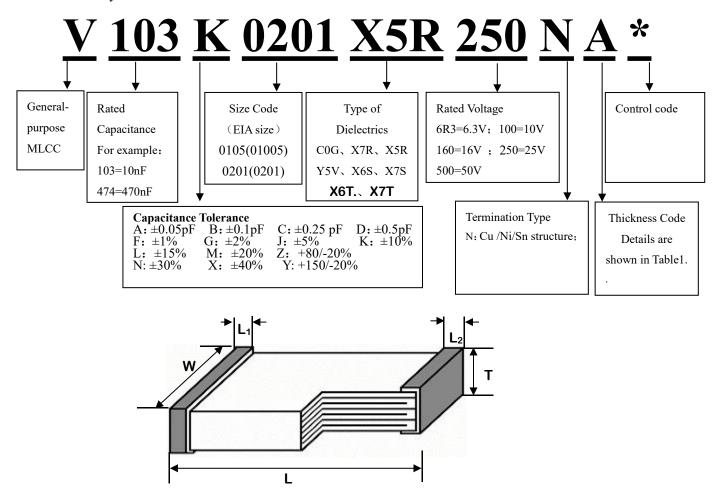


Figure 1 Configuration and Dimension of MLCC

Table 1 Dimension of MLCC (Unite: mm)

Size Code	Length (L)	Width (W)	Width of Termination (L1, L2)	Thickness (T)	Thickness code
01005	0.40±0.02	0.20±0.02	0.07~0.13	0.20±0.02	Z
	0.60±0.03	0.30±0.03	0.1~0.2	0.30±0.03	A
0201	$0.60^{+0.05}$ -0.03	0.30+0.05-0.03	0.1~0.2	0.3 ^{+0.05} -0.03	J
	$0.60^{+0.09}$ -0.03	0.30+0.09-0.03	0.1~0.2	0.30+0.09-0.03	7
	$0.60^{+0.1}$ - 0.03	0.30+0.1-0.03	0.1~0.2	0.3 ^{+0.1} -0.03	X

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.					Page	number	3 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor			File t	ype	Product	Specification	
Issued No.	SGVX-CCG202111	Confidentiality level	External public documents		С	Date	2021-11-05

Table 2 Type of dielectrics

Type of Dielectrics	Operating Temperature Range	Temperature Coefficient or Characteristic
NP0	-55℃~+125℃	C0G: 0±30ppm/℃
INPU	-33 C ~ +123 C	C0H: 0±60ppm/°C
X7R	-55°C∼+125°C	±15%
X5R	-55°C ∼+85°C	±15%
Y5V	-30°C ∼+85°C	-82%≤∆C/C≤+22%
X6S	-55°C∼+105°C	±22%
X7S	-55°C ~+125°C	±22%
X6T	-55°C∼+105°C	+22%~-33%
X7T	-55°C∼+125°C	+22%~-33%

Table 3 Rated Voltage and Rated Capacitance

	Rate				Capacitance					Thick
Size	Voltage /U _R	C0G	X7R	X5R	Y5V	X6S	X7S	X6T	X7T	ness code
	50V	0.2pF~100pF	_	_	_	_		_	_	Z
	25V	0.2pF~100pF	100pF~1.0nF					_	_	Z
01005	16V	1pF~100pF	1.0nF~4.7nF	10nF ~15nF						Z
01003	10V	_		10nF ~22nF					_	Z
	6.3V			33nF~100nF				_	_	Z
	4V	_		100nF			_			Z
	50V	0.1pF~220pF	100pF~3.3nF	100pF~10nF	100pF~1.5nF			_		A
		0.1pF~1nF	3.3nF ~10nF	100pF~47nF	1.0nF~22nF					A
	25V			27nF~100nF	33nF~100nF			_	_	J
				220nF~470nF	220nF				_	X
	35V			100nF	100nF				_	X
		_	10nF~22nF	47nF~100nF	3.3nF~100nF	12nF∼47nF	$22nF\sim47nF$	_	_	Α
	16V	_	_	100nF~220nF	100nF~220nF	100nF	22nF~47nF	_	_	J
		_	_	330nF~1.0μF	330nF~1.0μF	100nF	_		_	X
		_	_	100nF	3.3nF~100nF	12nF~100nF	10nF~47nF		_	Α
0201	1017	_	_	100nF~220nF	100nF~220nF	100nF~220nF	100nF			J
	10V	_	_	1.0uF					_	7
		_	_	330nF~2.2μF	330nF~2.2μF	220nF	_	_	220nF	X
				100nF~220nF	15nF~220nF	100nF	$47nF\sim100nF$		_	A
	6.3V		_	100nF~2.2μF	100nF~2.2μF	100nF~220nF	100nF	_	220nF~470 nF	J
			—	470nF~2.2μF	470nF~2.2μF	220nF~470nF	_		_	X
		_	_		_	12nF∼100nF	_	_	_	A
	4V		_	470nF~1.0uF	470nF~680nF			_	220nF	J
		_	_	680nF~2.2μF	680nF~2.2μF	220nF~470nF	_	1.0uF	470nF	X

Note: 1) E12 series for X6T,X7T,X6S,X7S,X7R and X5R groups, E6 series for Y5V group, E24 series for C0G group, integer nominal values such as 1.0, 2.0, 3.0pF, etc. are allowed for the specifications below 10pF.

²⁾ For products of the same size, material and capacity, the rated voltage can be covered from high to low.

VIIYUNG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.					Page	number	4 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor F				File ty	ype	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level	External public documents		С	Date	2021-11-05

Type of Packing:

Reel Packaging (standard carrier tape disc packaging), every disc smallest package shown in Table 4.

Table 4 Type of Packing

Chip Size	010	005	0201		
Thickness code	Z	Z	A/J	A/X/J	A/X/J
Disc size	7 "	7 "	7 "	7 "	13 "
Carrier Tape type	Paper	Plastic	Paper	Paper	Paper
QTY (Kpcs)	20	40	10	15	50

First packaging: Each multi-disc material is packed into a box.

The second packaging: the first packaged packaging box is loaded into the paper packaging box, and the remaining space in the box is filled with light auxiliary materials. The above packaging forms can also be packaged according to user needs.

- 4. Specifications and Test Methods:
- 4.1 Visual Inspection:
- 4.1.1 Requirement: no obvious defects on ceramic body and termination.
- 4.1.2 Test Method: Microscope 10×.
- 4.2 Size:
- 4.2.1 Requirement: Configuration and dimension of MLCC are shown in Figure 1 and Table 1.
- 4.2.2 Test Method: Measuring by gages which precision is not less than 0.01 mm.

4.3 Operating Environment:

C0G/C0H(NP0)、X7R	Temperature: -55°C ~+125°C; RH: ≤95%(25°C)	Barometric pressure: 86 KPa ∼106KPa
X5R	Temperature: -55° C $\sim +85^{\circ}$ C; RH: $\leq 95\%$ (25°C)	Barometric pressure: 86 KPa ∼106KPa
Y5V	Temperature: $-30^{\circ}\text{C} \sim +85^{\circ}\text{C}$; RH: $\leq 95\%$ (25°C)	Barometric pressure: 86 KPa ∼106KPa
X6S	Temperature: -30°C ~+105°C; RH: ≤95%(25°C)	Barometric pressure: 86 KPa ∼106KPa
X7S	Temperature: -30°C ~+125°C; RH: ≤95%(25°C)	Barometric pressure: 86 KPa ∼106KPa
X6T	Temperature: -30°C∼+105°C; RH: ≤95%(25°C)	Barometric pressure: 86 KPa ∼106KPa
X7T	Temperature: -30°C~+125°C; RH: ≤95%(25°C)	Barometric pressure: 86 KPa ∼106KPa

VIIYUNG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.						number	5 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor				File ty	/pe	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level	External public documents			Date	2021-11-05

4.4 Electrical Parameters and Test Methods:

Table 5 Specifications and Test Methods of MLCC Electrical Parameter

No.	Item	Specification	Test Method
1	Capacitance (C)	Within the specified tolerance	
2	Tangent of Loss Angle/ (tgδ)	$C0G/C0H(NP0): C\geq 30pF, tg\delta \leq 10\times 10^{-4}; \\ C<30pF, tg\delta \leq 1.0\times (90/C+7)\times 10^{-4}$ X7R: $U_R=50V tg\delta \leq 500\times 10^{-4}; U_R=25V tg\delta \leq 500\times 10^{-4} \\ U_R=16V tg\delta \leq 500\times 10^{-4}; U_R=10V tg\delta \leq 500\times 10^{-4}$ X5R,Y5V: $U_R=50V tg\delta \leq 1000\times 10^{-4} \\ U_R=35V/25V/16V tg\delta \leq 1250\times 10^{-4} \\ U_R\leq 10V tg\delta \leq 1500\times 10^{-4} \\ X6S,X7S,X6T,X7T: U_R\geq 25V tg\delta \leq 1000\times 10^{-4}; U_R=16V tg\delta \leq 1250\times 10^{-4}; U_R=10V tg\delta \leq 1250\times 10^{-4}; U_R=1$	Temperature:18~28°C; Humidity: ≤RH 80%; Test Frequency: NP0 (C0G/C0H): C≤1000pF, f=1MHz±10% X7R,X5R,Y5V,X6S,X7S,X6T,X7 T: f=1KHz±10% Test voltage: 1.0±0.2Vrms
3	Insulation Resistances/ (Ri)	C0G/C0H(NP0): Ri≥10000MΩ X7R,X5R,Y5V: Ri≥4000MΩ (C≤25nF) Ri×C≥100s (C>25nF) X6S,X7S,X6T,X7T: Ri×C≥100s	Temperature:18~28°C; Humidity: ≤RH 80%; Apply rated voltage for 60±5secs.
4	Withstanding Voltage (WV)	No breakdown or flashover during test	NP0 (C0G/C0H): 3 ×U _R X7R,X5R,Y5V,X6S,X7S,X6T,X7 T:2.5×U _R Duration: 1 min. Charge/discharge current not exceeds 50mA.

Note: Capacitance test instructions of Class 2 ceramic capacitors

When the capacitor initial capacitance is lower than its tolerance value, the test sample need to be heated for 60 ± 5 minutes at 150 °C. Recover it, let sit at room temperature for 24±2 hrs, and then test the capacitance.

VIIYO	VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.						6 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor			File ty	pe	Product	Specification	
Issued No.	SGVX-CCG202111	Confidentiality level		rnal public	;	Date	2021-11-05

4.5 Environment Test Specifications and Methods:

Without specific note, the "test method" in Table 6 is based on GB/T 21041/21042 IDT IEC60384-21/22 Table 6 Environment Test Specifications and Methods

	_	Table 6 Environment Test Specifications and N	
No.	Item	Specification	Test Method
1	Temperature Coefficient of Capacitance (α_c) or Temperature Characteristics	NP0(C0G): $\alpha_c \le \pm 30 \text{ppm/}^{\circ}\text{C} (125^{\circ}\text{C});$ $-72 \le \alpha_c \le \pm 30 \text{ppm/}^{\circ}\text{C} (-55^{\circ}\text{C});$ NP0(C0H) $\alpha_c \le \pm 60 \text{ppm/}^{\circ}\text{C} (125^{\circ}\text{C});$ $-72 \le \alpha_c \le \pm 30 \text{ppm/}^{\circ}\text{C} (-55^{\circ}\text{C});$ (It need not be tested for capacitance below 10pF, as is able to be assured by dielectric materials) X7R, X5R: $\Delta \text{C/C} \le \pm 15\%$ X6S, X7S: $\Delta \text{C/C} \le \pm 15\%$ X6S, X7S: $\Delta \text{C/C} \le \pm 22\%$ X6T, X7T: $-33\% \le \Delta \text{C/C} \le 22\%$	Preliminary Drying for $16\sim24$ hrs (NP0(C0G/C0H)). Special preconditioning for 1hr at 150°C followed by 24 hrs (X7R, X5R,Y5V,X6S, X7S,X6T,X7T). The ranges of capacitance change compared with the temperature ranges (θ_1 , 25°C , θ_2) shall be within the specified ranges. NP0, X7R,X7S,X7T: θ_1 = -55°C , θ_2 = 125°C ; X6S,X6T: θ_1 = -55°C , θ_2 = 105°C X5R: θ_1 = -55°C , θ_2 = 85°C ; Y5V: θ_1 = -30°C , θ_2 = 85°C . Test voltage: $0.5\pm0.2\text{Vrms}$ test voltage of special specifications referto table 6-1 $\frac{\text{SIZE}}{\text{COG/X7}} \frac{\text{TCC}}{\text{capacitance list}} \frac{\text{CAP}}{\text{1.0}\pm0.2\text{Vrms}} \frac{\text{Test Voltage}}{\text{1.0}\pm0.2\text{Vrms}} \frac{\text{COG}}{\text{5}} \frac{\text{Capacitance list}}{\text{1.0}\pm0.2\text{Vrms}} \frac{1.0\pm0.2\text{Vrms}}{\text{1.0}\text{1}} \frac{\text{CC}}{\text{1.0}\text{1}\text{F}} \frac{\text{0.5}\pm0.1\text{Vrms}}{\text{0.5}\pm0.1\text{Vrms}} \frac{\text{CC}}{\text{1.0}\text{F}} \frac{\text{1.0}\pm0.2\text{Vrms}}{\text{0.5}\pm0.1\text{Vrms}} \frac{\text{CC}}{\text{1.0}\text{F}} \frac{\text{0.5}\pm0.1\text{Vrms}}{\text{0.5}\pm0.1\text{Vrms}} \frac{\text{220nF} \leq C \leq 47 \text{np}}{\text{0.5}\pm0.1\text{Vrms}} \frac{\text{1.0}\text{F}}{\text{0.0}\text{C}} \frac{\text{0.5}\pm0.1\text{Vrms}}{\text{0.0}\text{F}} \frac{\text{1.0}\pm0.2\text{Vrms}}{\text{0.5}\pm0.1\text{Vrms}} \frac{\text{1.0}\text{F}}{\text{1.0}\pm0.2\text{Vrms}} $
			1.0±0.2Vrms 1.0±0.2Vrms Y5V capacitance list 1.0±0.2Vrms
		Visual: No visible damage and terminations uncovered shall be less than 25%.	Special preconditioning for 1hr at 150°C followed by 24hrs (X7R,X5R,Y5V,X6S, X7S,X6T,X7T). Preheat the capacitor at
		Capacitance Change:	110 to 140°C for 30~60s. Immerse the
2	Resistance to Soldering Heat	NP0(C0G/C0H): Δ C/C \leq \pm 2.5% or 0.25pF, whichever is larger; X7R, X5R,Y5V,X6S,X7S,X6T,X7T: Δ C/C \leq \pm 15%;	capacitor in an eutectic solder solution at 260±5°C for 10±1 seconds. The depth of immersion is 10mm. Recover it, let sit at room temperature for 6~24hrs (NP0(C0G/C0H)) or
		$tg\delta$ and Ri: meet the initial specification in	24±2hrs (X7R,X5R,Y5V,X6S,X7S,X6T,X7T), then observe appearance and measure
		Table 5.	electrical characteristics.

VIIYO	NG GUANGDONG VIIYONG ELE	TD.	Page n	number	7 / 14		
File name Ultra Micro Multi-layer Ceramic Chip Capacitor				File typ	e	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level	_	al public ments		Date	2021-11-05

3	Solderability	75% min. coverage of both terminal electrodes is soldered evenly and continuously.	Immerse the test capacitor into a methanol solution containing rosin for 3 to 5 seconds, preheat it at 80 to 140°C for 30~60s and immerse it into molten solder of 235±5°C for 2±0.2 seconds. The depth of immersion is 10mm.
		Visual: No visible damage.	Solder the capacitor to the test jig (glass epoxy boards) shown in Fig. a. Apply a force in the direction shown in Fig. b. Bending 1mm at a speed of 1mm/sec
4	Bond Strength of Termination	Capacitance Change: NP0(C0G/C0H): $\Delta C/C \le \pm 5\%$ or ± 0.5 pF,witchever is larger; $X7R,X5R,Y5V,X6S,X7S,X6T,X7T$: $\Delta C/C \le \pm 12.5\%$;	and hold for 5±1 secs, then measure the capacitance. b 04.5 40 t:0.8mm Fig: a 20 pressurize R230 Capacitance meter Fig. b (Unit: mm)
5	Adhesion	Visual: No visible damage.	Solder the capacitor on a P. C. board, apply a pushing force F for 10±1secs. Capacitor P. C. Board 01005 F=1N 0201 F=2N

VIIYO	VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.						8 / 14
File name	Ultra Micro Multi-layer Ce	ramic Chip Capac	itor	File ty	ype	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level		rnal public cuments	С	Date	2021-11-05

		l .		
			Visual: No visible damage.	
	6	Vibration N W X	Capacitance Change: NP0(C0G/C0H): Δ C/C \leq ±2.5% or ±0.25pF, whichever is larger; X7R , X5R,Y5V: Δ C/C \leq ±12.5%; X6S,X7S,X6T,X7T: Δ C/C \leq ±15%.	Sample shall be mounted on a suitable substrate. Amplitude: 1.5mm Frequencies: from 10 to 55Hz, and back to 10 Hz in about 1 min. Repeat this for 2hrs each in 3 perpendicular directions X, Y, Z, total
			$tg\delta$ and Ri: meet the initial specification in Table 5.	6hrs.
			Visual: No visible damage.	
			Capacitance Change: NP0(C0G/C0H): Δ C/C \leq ±2.5% or ±0.25pF, whichever is larger; X7R,X5R,Y5V: Δ C/C \leq ±15%; X6S,X7S,X6T,X7T: Δ C/C \leq ±20%.	Special preconditioning for 1hr at 150°C followed by 24hrs (X7R, X5R,Y5V,X6S,X7S,X6T,X7T). Fix the capacitor to the supporting jig. Expose the capacitors in the condition step 1 through 4 and perform 5 cycles. Step temperature (°C) time θ_A 30 min
	7	Rapid change of temperature	tgδ and Ri: meet the initial specification in Table 5.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

VIIYO	NG GUANGDONG VIIYONG ELE	, LTD.	Page	number	9 / 14		
File name	Ultra Micro Multi-layer Ce	ramic Chip Capac	itor	File ty	pe	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level		rnal public cuments		Date	2021-11-05

	I	icvei	documents	
		Visual: No visible damage. Capacitance change: NP0(C0G/C0H):ΔC/C≤±5% or ±0. whichever is larger; X7R,X5R,Y5V: ΔC/C≤±12.5%; X6S,X7S,X6T,X7T: ΔC/C≤±30%.	5pF ,	
8	Damp Heat (Steady State)	Tangent of loss angle ($tg\delta$): NP0(C0G/C0H): $tg\delta \le 20 \times 10^{-4}$ (C ≥ 30 pF) or $tg\delta \le 2 \times (90/C+7) \times 10^{-4}$ (C ≤ 30 pF) X7R: $tg\delta \le 700 \times 10^{-4}$; X6S,X7S,X6T,X7T: $tg\delta \le 2 \times the$ specification in Table 5; X5R,Y5V: $tg\delta \le 1200 \times 10^{-4}$.	follow (X7R Test T Humi Durat initial Recor	al preconditioning for 1hr at 150°C wed by 24hrs "X5R,Y5V,X6S,X7S,X6T,X7T). Temperature: 40°C±2°C idity: RH 90~95% tion:500hrs ver it, let sit at room temperature i~24hrs(NP0 (C0G/C0H)) or hrs
		Insulation Resistances (Ri): NP0(C0G/C0H): Ri \geq 2500M Ω or Ri \times C \geq 50s , which smaller; X7R,X5R,Y5V,X6S,X7S,X6T,X7T: Ri \geq 1000M Ω or Ri \times C \geq 50s (U _R \geq whichever is smaller; Ri \geq 1000M Ω or Ri \times C \geq 10s (U _R \leq whichever is smaller.	then electron hever is	"X5R,Y5V,X6S,X7S,X6T,X7T), observe appearance and measure ical characteristics.

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.						number	10 / 14
File name	Ultra Micro Multi-layer Ce	eramic Chip Capac	itor	File ty	ype	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level		rnal public	С	Date	2021-11-05

	<u> </u>			
		Visual: No visible damage.		
		Capacitance change: NP0(C0G/C0H): Δ C/C \leq ±7.5% or ±0.75pF, whichever is larger; X7R: Δ C/C \leq ±12.5%; X5R,Y5V: Δ C/C \leq ±15%; X6S,X7S,X6T,X7T: Δ C/C \leq ±30%	followed X5R,Y5V, X7S,X6T,2	· ·
9	Damp heat with load	Tangent of loss angle (tg δ): NP0(C0G/C0H): tg $\delta \leq 50 \times 10^{-4}$ (C ≥ 30 pF) or tg $\delta \leq 5 \times (90$ /C+7) $\times 10^{-4}$ (C < 30 pF); X7R: tg $\delta \leq 700 \times 10^{-4}$; X5R,Y5V: tg $\delta \leq 1200 \times 10^{-4}$; X6S,X7S,X6T,X7T: tg $\delta \leq 2 \times 10^{-4}$ initial specification in Table 5.	Humidity: Test Voltage Duration: Charge/dis 50mA. Recover it for 6~24h 24±2hrs (X7R,X5R) then observed electrical control (Special 150°C followed)	RH 90∼95%; ge: 1.0*U _R ;
		Insulation Resistances (Ri): Ri≥500MΩ or Ri×C≥25s, whichever smaller		

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.						number	11 / 14
File name	Ultra Micro Multi-layer Ce	ramic Chip Capac	itor	File ty	ype	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level		rnal publicuments	е	Date	2021-11-05

<u> </u>		
		Visual: No visible damage.
10	Endurance	Capacitance Change: NP0(C0G/C0H): Δ C/C≤±3% or ±0.3pF, whichever large; X7R,X5R,Y5V: Δ C/C≤±15%; X6S,X7S,X6T,X7T: Δ C/C≤±30% Tangent of loss angle (tg δ): NP0(C0G/C0H): tg δ ≤20×10 ⁻⁴ (C≥30pF) or tg δ ≤2×(90/C+7)×10 ⁻⁴ (C<30pF); X7R: tg δ ≤700×10 ⁻⁴ ; X5R,Y5V: tg δ ≤1200×10 ⁻⁴ ;
		$X6S,X7S,X6T,X7T$: $tg\delta \le 2 \times the$ initial specification in Table 5.
		Insulation Resistances (Ri): $NP0(C0G/C0H):$ $Ri \ge 1000M\Omega \text{or} Ri \times C \ge 50s , \text{whichever smaller};$ $X7R,X5R,Y5V,X6S,X7S,X6T,X7T:$ $Ri \ge 1000M\Omega \text{or} Ri \times C \ge 50s (U_R \ge 25V) , \text{whichever smaller};$ $Ri \ge 1000M\Omega \text{or} Ri \times C \ge 10s (U_R \le 16V) , \text{whichever smaller}.$

Special preconditioning for 1hr at 150°C followed by 24hrs (X7R,X5R,Y5V,X6S, X7S,X6T,X7T).

Test Temperature:

NP0(C0G/C0H), X7R, X7S, X7T: 125°C;

X6S,X6T:105°C; X5R,Y5V: 85°C; Duration: 1000hrs;

Test Voltage: 1.5×UR

SIZE	CAP.	Rated Voltage	Test Voltage
0100 5	Capacitan ce list	All voltages	1.5×U _R
	<1.0μF	All voltages	1.5×U _R
0201	≥1.0µF	≥4V	1.0×U _R
	220nF≤C p≤470nF	≥25V	1.0×U _R

Recover it, let sit at room temperature for $6{\sim}24hrs(NP0~(~C0G/C0H~)~)$ or $24{\pm}2hrs$

(X7R,X5R,Y5V,X6S,X7S,X6T,X7T), then observe appearance and measure electrical characteristics.

(Special preconditioning for 1hr at 150°C followed by 24hrs, then measure electrical characteristics. (Cp≥100nF))

Table6-1 test voltage of special specifications

	Rate		test voltage			
Size	Voltage /U _R	X6S	X6T	X7T	X7S	Vrms
	16V	22nF~100nF		100nF		0.2±0.01
	10V	22nF~220nF		100nF/220nF		0.2±0.01
	470nF	470nF				0.3±0.01
0201		22nF~220nF		100nF~330nF		0.2±0.01
0201				470 nF		0.1±0.01
		470nF		470nF		0.2±0.01
		22nF~100nF		100nF		0.2±0.01
		_	1uF	_	_	0.1±0.01

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.					Page number		12 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor				File ty	/pe	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level	•			Date	2021-11-05

- 5. Packaging, Shipment and storage:
- 5.1 Packing:
- 5.1.1 Packing type:

Reel Packaging (standard carrier tape disc packaging), single disc smallest package are shown in Table 4.

5.1.2 Carrier Tape size:

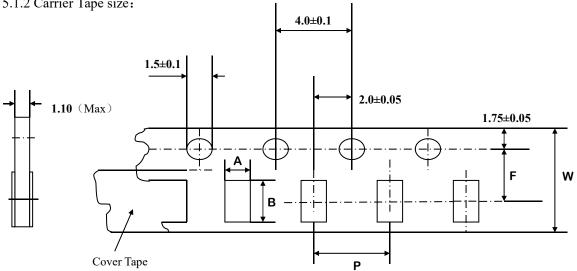


Figure 2 Carrier

Table 7 Carrier size

	Size Code			
Mark	01005	0201		
	Size (Unit: mm)			
A (Width of the square hole)	0.24±0.03	0.37±0.03		
B (Length of the square hole)	0.45±0.03	0.67±0.03		
F (Center distance between positioning hole and square hole)	3.50±0.05	3.50±0.05		
P (Square hole spacing)	2.00±0.10	2.00±0.10		
W (Width of carrier)	8.00±0.20	8.00±0.20		

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.						number	13 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor				File ty	/pe	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality level	External public documents			Date	2021-11-05

5.1.3 Disc size:

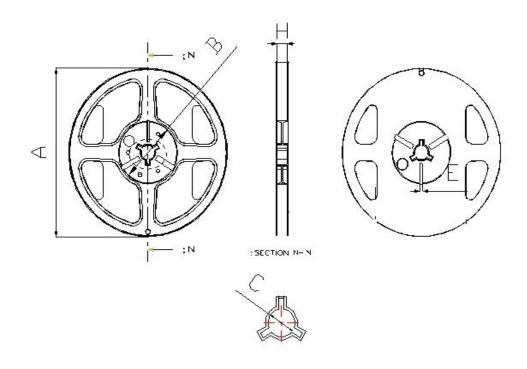
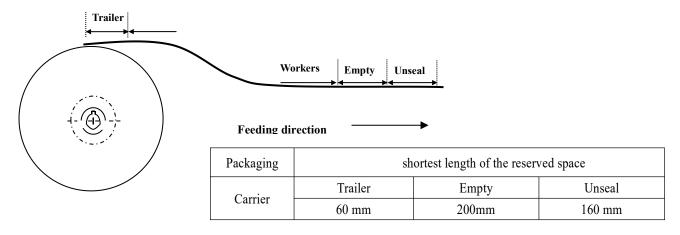



Figure 3 Disc

Table 8 Disc size

Disc Size	A/mm	B/mm	C/mm	E/mm	H/mm
7"	Φ178±2.0	Ф60±2.0	Ф13±1.0	4±1.0	9.5±1.0
13"	Ф330±2.0	Φ100±2.0	Ф13±1.0	3±1.0	10±1.0

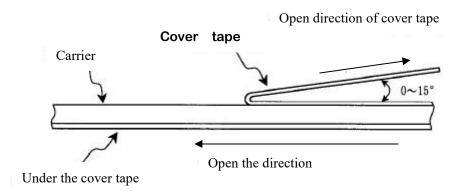
5.1.4 Carrier specifications:

VIIYONG GUANGDONG VIIYONG ELECTRONIC TECHNOLOGY CO., LTD.					Page	number	14 / 14
File name Ultra Micro Multi-layer Ceramic Chip Capacitor				File ty	pe	Product	Specification
Issued No.	SGVX-CCG202111	Confidentiality External publicular documents		•	;	Date	2021-11-05

5.1.5 Performance of Carrier Taping:

5.1.5.1 Strength of Carrier Tape and Top Cover Tape:

a. Carrier Tape


When a tensile force 1.02kgf is applied in the direction to unreel the tape, the tape shall with stand this force.

b. Top cover Tape

When a tensile force 1.02kgf is applied to the tape, the tape shall withstand this force.

5.1.5.2 Peeling Strength of Top Cover Tape:

Unless otherwise specified, the peeling strength of top cover tape shall be within 10.2 to 71.4 gf when the top cover tape is pulled at a speed of 300mm/min with the angle of 0 to 15°(see the following figure).

5.2 Shipment:

Transport packaging products to adapt to the modern means of transport, but the product in the process of transport to prevent rain and acid and alkali corrosion, shall not be whipped extrusion casting and gravity.

5.3 Storage:

Storage period: 12 months, otherwise, its solderability must be inspected again.

Storage conditions:

Temperature: less than 35 $\,^{\circ}$ C,

Relative humidity: less than RH70 %