DS90LV032AQML

DS90LV032AQML 3V LVDS Quad CMOS Differential Line Receiver

Literature Number: SNLS205

DS90LV032AQML

3V LVDS Quad CMOS Differential Line Receiver

General Description

The DS90LV032A is a quad CMOS differential line receiver designed for applications requiring ultra low power dissipation and high data rates.

The DS90LV032A accepts low voltage (350 mV typical) differential input signals and translates them to 3V CMOS output levels. The receiver supports a TRI-STATE® function that may be used to multiplex outputs.

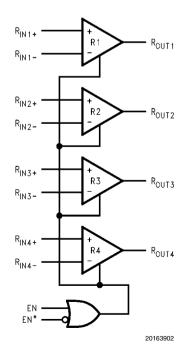
The DS90LV032A and companion LVDS line driver (eg. DS90LV031A) provide a new alternative to high power PECL/ ECL devices for high speed point-to-point interface applications.

In addition, the DS90LV032A provides power-off high impedance LVDS inputs. This feature assures minimal loading effect on the LVDS bus lines when $V_{\rm CC}$ is not present.

Features

- Low chip to chip skew
- Low differential skew
- High impedance LVDS inputs with power-off
- Low power dissipation
- Accepts small swing (330 mV) differential signal levels.
- Compatible with ANSI/TIA/EIA-644
- Operating temperature range (-55°C to +85°C)
- Pin compatible with DS90C032A and DS26C32A.
- Typical Rise/Fall time is 350pS.

Ordering Information


NS Part Number	SMD Part Number	NS Package Number	Package Description
DS90LV032AW-QML	5962-9865201QFA	W16A	16LD Ceramic Flatpack
DS90LV032AWGQML	5962-9865201QXA	WG16A	16LD Ceramic SOIC
DS90LV032AW-MLS		W16A	16LD Ceramic Flatpack
DS90LV032AWGMLS		WG16A	16LD Ceramic SOIC
DS90LV032 MDS		(Note 10)	BARE DIE

Connection Diagram

Dual-in-Line Pictured 16 R_{IN1-} V_{CC} R_{IN1+} 15 RIN4-R_{OUT 1} 13 ROUT4 12 · FN* R_{OUT2} 11 R_{OUT3} R_{IN2+} R_{IN3+} R_{IN2}-10 GND R_{IN3}-

See NS Package Number W16A or WG16A

Functional Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

Supply Voltage (V_{CC}) -0.3V to +4V Input Voltage (R_I+, R_I-) -0.3V to +3.9V Enable Input Voltage (En, En*) -0.3V to $(V_{CC} + 0.3V)$ Output Voltage (R_O) -0.3V to $(V_{CC} + 0.3V)$ Storage Temperature Range $-65^{\circ}\text{C} \le \text{T}_{\text{A}} \le +150^{\circ}\text{C}$ Lead Temperature Range (Soldering 4 sec.) +260°C Maximum Package Power Dissipation @ +25°C (Note 2) W Package 845 mW WG Package 845 mW Thermal Resistance W Package 148°C/W WG Package 148°C/W θ_{JC} W Package 21°C/W WG Package 21°C/W Maximum Junction Temperature +150°C

Recommended Operating Conditions

	Min	Max	Unit
Supply Voltage (V _{CC})	+3.15	+3.45	V
Receiver Input Voltage	Gnd	+3.0	V
Operating Free Air Temperature (T _A)	-55	+85	°C

4.5 KV

Quality Conformance Inspection

Mil-Std-883, Method 5005 - Group A

ESD Rating (Note 3)

Subgroup	Description	Temp °C
1	Static tests at	+25
2	Static tests at	+125
3	Static tests at	-55
4	Dynamic tests at	+25
5	Dynamic tests at	+125
6	Dynamic tests at	-55
7	Functional tests at	+25
8A	Functional tests at	+125
8B	Functional tests at	-55
9	Switching tests at	+25
10	Switching tests at	+125
11	Switching tests at	-55
12	Settling time at	+25
13	Settling time at	+125
14	Settling time at	-55

DS90LV032A Electrical Characteristics

DC Parameters

The following conditions apply, unless otherwise specified.

Over supply voltage range of 3.15V to 3.45V and operating temperature of -55°C to +85°C.

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
V _{TL}	Differential Input Low Threshold	V _{CM} = +1.2V	(Note 4)	-100		mV	1, 2, 3
V _{Th}	Differential Input High Threshold	V _{CM} = +1.2V	(Note 4)		100	mV	1, 2, 3
VCMR	Common Mode Voltage Range	V _{ID} = 200mV peak to peak	(Note 4), (Note 6)	0.1	2.3	V	1, 2, 3
I _I	Input Current	V _{CC} = 3.45V or 0V, V _I = 2.8V or 0V			±10	μΑ	1, 2, 3
		$V_{CC} = 0V, V_I = 3.45V$			±20	μΑ	1, 2, 3
V _{OH}	Output High Voltage	$I_{OH} = -0.4 \text{ mA}, V_{ID} = 200 \text{mV}$		2.7		V	1, 2, 3
		I _{OH} = -0.4 mA, Inputs Open		2.7		V	1, 2, 3
V _{OL}	Output Low Voltage	$I_{OL} = 2 \text{ mA}, V_{ID} = -200 \text{mV}$			0.25	V	1, 2, 3
I _{os}	Output Short Circuit Current	Enabled, V _O = 0V	(Note 8)	-15	-120	mA	1, 2, 3
I _{OZ}	Output TRI-STATE Current	Disabled, $V_O = 0V$ or V_{CC}			±10	μΑ	1, 2, 3
V _{IH}	Input High Voltage		(Note 9)	2.0	V _{CC}	V	1, 2, 3
V _{IL}	Input Low Voltage		(Note 9)	Gnd	0.8	V	1, 2, 3
I _L	Input Current	$V_I = V_{CC}$ or 0V, Other Input = V_{CC} or Gnd			±10	μΑ	1, 2, 3
V _{CI}	Input Clamp Voltage	I _{CI} = -18mA			-1.5	V	1, 2, 3
I _{cc}	No Load Supply Current Receivers Enabled	En, En* = V _{CC} or Gnd, Inputs Open			15	mA	1, 2, 3
		En, En* = 2.4 or 0.5, Inputs Open			15	mA	1, 2, 3
I _{CCZ}	No Load Supply Current Receivers Disabled	En = Gnd, En* = V _{CC} , Inputs Open			5.0	mA	1, 2, 3

AC Parameters

The following conditions apply, unless otherwise specified.

AC: $V_{CC} = 3.15 / 3.3 / 3.45V$, $C_L = 20pF$

Symbol	Parameter	Conditions	Notes	Min	Max	Units	Sub- groups
t _{PHLD}	Differential Propagation Delay High to Low	$V_{ID} = 200$ mV, Input pulse = 1.1V to 1.3V, $V_{I} = 1.2$ V (0V differential) to $V_{O} = 1/2$ V _{CC}	Fig 1 & 2	0.5	3.5	ns	9, 10, 11
t _{PLHD}	Differential Propagation Delay Low to High	V_{ID} = 200mV, Input pulse = 1.1V to 1.3V, V_{I} = 1.2V (0V differential) to V_{O} = 1/2 V_{CC}	Fig 1 & 2	0.5	3.5	ns	9, 10, 11
t _{SkD}	Differential Skew It _{PHLD} - t _{PLHD} I	$C_L = 20pF, V_{ID} = 200mV$	Fig 1 & 2		1.5	ns	9, 10, 11
t _{Sk1}	Channel to Channel Skew	$C_L = 20pF, V_{ID} = 200mV$	(Note 7)		1.75	ns	9, 10, 11
t _{Sk2}	Chip to Chip Skew	C _L = 20pF, V _{ID} = 200mV	(Note 5)		3.0	ns	9, 10, 11
t _{PLZ}	Disable Time Low to Z	Input pulse = 0V to 3.0V, $V_I = 1.5V$, $V_O = V_{OL} + 0.5V$, $R_L = 1k\Omega$.	Fig 3 & 4		12	ns	9, 10, 11

Symbol	Parameter	Conditions	Notes	Min	Мах	Units	Sub- groups
t _{PHZ}	Disable Time High to Z	Input pulse = 0V to 3.0V, $V_{I} = 1.5V, V_{O} = V_{OH} \text{-}0.5V,$ $R_{L} = 1 \text{k}\Omega.$	Fig 3 & 4		12	ns	9, 10, 11
t _{PZH}	Enable Time Z to High	Input pulse = 0V to 3.0V, $V_I = 1.5V$, $V_O = 50\%$, $R_L = 1k\Omega$.	Fig 3 & 4		20	ns	9, 10, 11
t _{PZL}	Enable Time Z to Low	Input pulse = 0V to 3.0V, $V_I = 1.5V$, $V_O = 50\%$, $R_L = 1k\Omega$.	Fig 3 & 4		20	ns	9, 10, 11

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: Derate @ 6.8mW/°C

Note 3: Human body model, 1.5 k Ω in series with 100 pF.

Note 4: Tested during V_{OH}/V_{OL} tests by applying appropriate voltage levels to the input pins of the device under test.

Note 5: Chip to chip Skew is defined as the difference between the minimum and maximum specified differential propagation delays.

Note 6: The VCMR range is reduced for larger V_{ID} . Example: if $V_{ID} = 400$ mV, the VCMR is 0.2V to 2.2V. The fail-safe condition with inputs shorted is valid over a common-mode range of 0V to 2.3V. A V_{ID} up to $V_{CC} = 0$ V may be applied to the R_{IN+}/R_{I-} inputs with the Common-Mode voltage set to $V_{CC}/2$. Propagation delay and Differential Pulse skew decrease when V_{ID} is increased from 200mV to 400mV. Skew specifications apply for 200mV $V_{ID} = 800$ mV over the common-mode range.

Note 7: Channel-to-Channel Skew, is defined as the difference between the propagation delay of one channel and that of the others on the same chip with any event on the inputs.

Note 8: Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only. Only one output should be shorted at a time, do not exceed maximum junction temperature.

Note 9: Tested during I_{OZ} tests by applying appropriate threshold voltage levels to the En and En* pins.

Note 10: FOR ADDITIONAL DIE INFORMATION, PLEASE VISIT THE HI REL WEB SITE AT: www.national.com/analog/space/level_die

Parameter Measurement Information

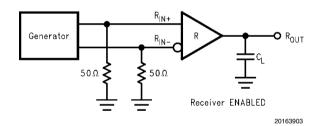


FIGURE 1. Receiver Propagation Delay and Transition Time Test Circuit

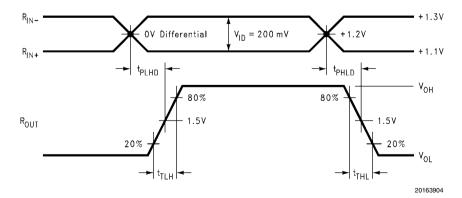
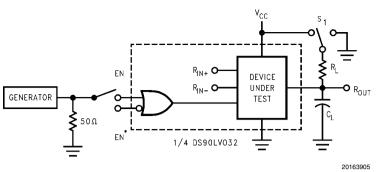



FIGURE 2. Receiver Propagation Delay and Transition Time Waveforms

 $\mathbf{C}_{\mathbf{L}}$ includes load and test jig capacitance.

 $S_1 = V_{CC}$ for t_{PZL} , and t_{PLZ} measurements.

 $S_1 = Gnd$ for t_{PZH} and t_{PHZ} measurements.

FIGURE 3. Receiver TRI-STATE Delay Test Circuit

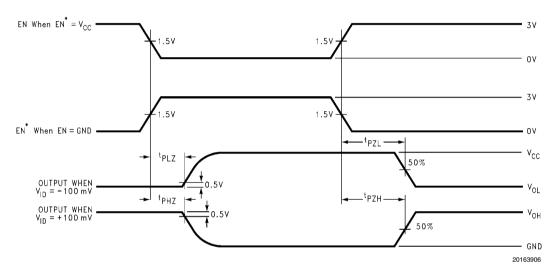
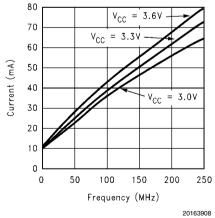



FIGURE 4. Receiver TRI-STATE Delay Waveforms

Typical Performance Characteristics

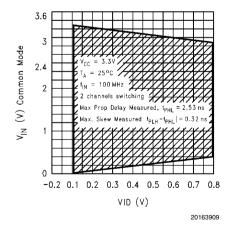


FIGURE 6. Typical Common-Mode Range variation with respect to amplitude of differential input

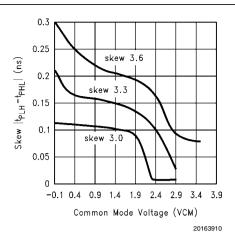


FIGURE 7. Typical Pulse Skew variation versus commonmode voltage

FIGURE 8. Variation in High to Low Propagation Delay versus ${\rm V_{CM}}$

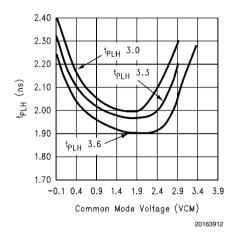


FIGURE 9. Variation in Low to High Propagation Delay versus V_{CM}

Typical Application



FIGURE 10. Point-to-Point Application

Applications Information

General application guidelines and hints for LVDS drivers and receivers may be found in the following application notes: www.national.com/lvds.

LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as is shown in Figure 10. This configuration provides a clean signaling environment for the fast edge rates of the drivers . The receiver is connected to the driver through a balanced media which may be a standard twisted pair cable, a parallel pair cable, or simply PCB traces. Typically the characteristic impedance of the media is in the range of 100Ω . A termination resistor of 100Ω should be selected to match the media, and is located as close to the receiver input pins as possible. The termination resistor converts the driver output (current mode) into a voltage that is detected by the receiver. Other configurations are possible such as a multi-receiver configuration. but the effects of a mid-stream connector(s), cable stub(s). and other impedance discontinuities as well as ground shifting, noise margin limits, and total termination loading must be taken into account.

The DS90LV032A differential line receiver is capable of detecting signals as low as 100 mV, over a $\pm 1V$ common-mode range centered around $\pm 1.2V$. This is related to the driver offset voltage which is typically $\pm 1.2V$. The driven signal is centered around this voltage and may shift $\pm 1V$ around this center point. The $\pm 1V$ shifting may be the result of a ground potential difference between the driver's ground reference and the receiver's ground reference, the common-mode effects of coupled noise, or a combination of the two. Both receiver input pins have a recommended operating input voltage range of 0V to $\pm 2.4V$ (measured from each pin to ground), exceeding these limits may turn on the ESD protection circuitry which will clamp the bus voltages.

POWER DECOUPLING RECOMMENDATIONS

Bypass capacitors must be used on power pins. High frequency ceramic (surface mount is recommended) $0.1\mu F$ in parallel with $0.01\mu F$, in parallel with $0.001\mu F$ at the power supply pin as well as scattered capacitors over the printed circuit board. Multiple vias should be used to connect the decoupling capacitors to the power planes A $10\mu F$ (35V) or greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board.

PC BOARD CONSIDERATIONS

Use at least 4 PCB layers (top to bottom); LVDS signals, ground, power, TTL signals.

Isolate TTL signals from LVDS signals, otherwise the TTL may couple onto the LVDS lines. It is best to put TTL and LVDS signals on different layers which are isolated by a power/ground plane(s).

Keep drivers and receivers as close to the (LVDS port side) connectors as possible.

DIFFERENTIAL TRACES

Use controlled impedance traces which match the differential impedance of your transmission medium (ie. cable) and termination resistor. Run the differential pair trace lines as close together as possible as soon as they leave the IC (stubs should be < 10mm long). This will help eliminate reflections and ensure noise is coupled as common-mode. Lab experiments show that differential signals which are 1mm apart radiate far less noise than traces 3mm apart since magnetic field cancellation is much better with the closer traces. Plus,

noise induced on the differential lines is much more likely to appear as common-mode which is rejected by the receiver.

Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase difference between signals which destroys the magnetic field cancellation benefits of differential signals and EMI will result. (Note the velocity of propagation, v = c/Er where c (the speed of light) = 0.2997mm/ps or 0.0118 in/ps). Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match differential impedance and provide isolation for the differential lines. Minimize the number of vias and other discontinuities on the line.

Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.

Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid discontinuities in differential impedance. Minor violations at connection points are allowable.

TERMINATION

Use a resistor which best matches the differential impedance of your transmission line. The resistor should be between 90Ω and $130\Omega.$ Remember that the current mode outputs need the termination resistor to generate the differential voltage. LVDS will not work without resistor termination. Typically, connect a single resistor across the pair at the receiver end. Surface mount 1% to 2% resistors are best. PCB stubs, component lead, and the distance from the termination to the receiver inputs should be minimized. The distance between the termination resistor and the receiver should be <10mm (12mm MAX)

PROBING LVDS TRANSMISSION LINES

Always use high impedance (> $100k\Omega$), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz) scope. Improper probing will give deceiving results.

CABLES AND CONNECTORS, GENERAL COMMENTS

When choosing cable and connectors for LVDS it is important to remember:

Use controlled impedance media. The cables and connectors you use should have a matched differential impedance of about 100Ω . They should not introduce major impedance discontinuities

Balanced cables (e.g. twisted pair) are usually better than unbalanced cables (ribbon cable, simple coax.) for noise reduction and signal quality. Balanced cables tend to generate less EMI due to field canceling effects and also tend to pick up electromagnetic radiation as common-mode (not differential mode) noise which is rejected by the receiver. For cable distances < 0.5M, most cables can be made to work effectively. For distances 0.5M \leq d \leq 10M, CAT 3 (category 3) twisted pair cable works well, is readily available and relatively inexpensive.

FAIL-SAFE FEATURE

The LVDS receiver is a high gain, high speed device that amplifies a small differential signal (20mV) to CMOS logic levels. Due to the high gain and tight threshold of the receiver, care should be taken to prevent noise from appearing as a valid signal.

The receiver's internal fail-safe circuitry is designed to source/ sink a small amount of current, providing fail-safe protection

(a stable known state of HIGH output voltage) for floating, terminated or shorted receiver inputs.

- 1. Open Input Pins. The DS90LV032A is a quad receiver device, and if an application requires only 1, 2 or 3 receivers, the unused channel(s) inputs should be left OPEN. Do not tie unused receiver inputs to ground or any other voltages. The input is biased by internal high value pull up and pull down resistors to set the output to a HIGH state. This internal circuitry will guarantee a HIGH, stable output state for open inputs.
- 2. Terminated Input. If the driver is disconnected (cable unplugged), or if the driver is in a TRI-STATE or power-off condition, the receiver output will again be in a HIGH state, even with the end of cable 100Ω termination resistor across the input pins. The unplugged cable can become a floating antenna which can pick up noise. If the cable picks up more than 10mV of differential noise, the receiver may see the noise as a valid signal and switch. To insure that any noise is seen as common-mode and not differential, a balanced interconnect should be used. Twisted pair cable will offer better balance than flat ribbon cable.
- Shorted Inputs. If a fault condition occurs that shorts the receiver inputs together, thus resulting in a 0V differential input voltage, the receiver output will remain in a HIGH state. Shorted input fail-safe is not supported across the common-mode range of the device (GND to

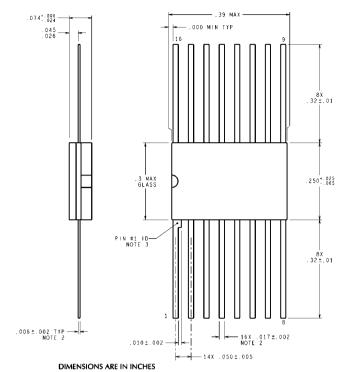
2.4V). It is only supported with inputs shorted and no external common-mode voltage applied.

External lower value pull up and pull down resistors (for a stronger bias) may be used to boost fail-safe in the presence of higher noise levels. The pull up and pull down resistors should be in the $5k\Omega$ to $15k\Omega$ range to minimize loading and waveform distortion to the driver. The common-mode bias point should be set to approximately 1.2V (less than 1.75V) to be compatible with the internal circuitry.

The footprint of the DS90LV032A is the same as the industry standard 26LS32 Quad Differential (RS-422) Receiver.

Pin Descriptions

Pin No.	Name	Description
2, 6,	R_{l+}	Non-inverting receiver input pin
10, 14		
1, 7,	R_{I-}	Inverting receiver input pin
9, 15		
3, 5,	R_{O}	Receiver output pin
11, 13		
4	En	Active high enable pin, OR-ed with En*
12	En*	Active low enable pin, OR-ed with En
16	V_{CC}	Power supply pin, +3.3V ± 0.3V
8	Gnd	Ground pin


Truth Table

ENABLES		INPUTS	OUTPUT
En	En*	R _{I+} – R _{I-}	R_{O}
L	Н	X	Z
		V _{ID} ≥ 0.1V	Н
All other combination	ons of enable inputs	V _{ID} ≤ -0.1V	L
		Full Fail-safe Open/Short or	Н
		Terminated	11

Revision History Section

Released	Revision	Section	Originator	Changes
	A	New Release, Corporate format	L. Lytle	1 MDS data sheet converted into one Corp. data sheet format. MNDS90LV032A-X Rev 0D0 will be archived.
15–Nov-2011	В	Ordering Information, Quality Conformance Inspection, AC Parameters, Applications Information	K. Kruckmeyer	Addeded Part Numbers DS90LV032AWGMLS and DS90LV032AW- MLS along with DS90LV032 MDS and associated footnote reference to Ordering Information. Added missing '+' sign on the Temp's for 25 and 125 deg C from QCI section. For AC Parameters changed units from nS to ns, changed 1K to 1k and added Fig 1, 2, 3 and 4 as needed for notes. Added Note 10 for die sales. For Application Information change minor typo errors under several sections. Revision A will be archived.

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Ceramic Flatpack NS Package Number W16A

W16A (Rev T)

WG16A (Rev E)

.000 MIN TYP -.410±.010 [10.41±0.25] .250⁺;020 [6.35⁺⁰;50 [6.35⁺⁰;50] SUPPLIER'S OPTION-(.370) [9.4] .010±.002 [0.25±0.05] 16X .017±.002 [0.43±0.05] RECOMMENDED LAND PATTERN 14X .050±.002 [1.27±0.05] .070*:010 [1.78*0:25] (R.015 TYP) .004 [0.1] .040±.003 [1.02±0.07] 0° - 4° TYP \ .018 MAX TYP [0.46] .008±.004 [0.2±0.1] -SEATING PLANE CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS DIMENSIONS IN () FOR REFERENCE ONLY MIL-PRF-38535 CONFIGURATION CONTROL

> 16-Lead Ceramic SOIC **NS Package Number WG16A**

Notes

TI/NATIONAL INTERIM IMPORTANT NOTICE

Texas Instruments has purchased National Semiconductor. As of Monday, September 26th, and until further notice, products sold or advertised under the National Semiconductor name or logo, and information, support and interactions concerning such products, remain subject to the preexisting National Semiconductor standard terms and conditions of sale, terms of use of website, and Notices (and/or terms previously agreed in writing with National Semiconductor, where applicable) and are not subject to any differing terms and notices applicable to other TI components, sales or websites. To the extent information on official TI and National websites and business social networking media, etc., pertains to both TI and National-branded products, both companies' instructions, warnings and limitations in the above-referenced terms of use apply.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Product	s	Applications		
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications	
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers	
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps	
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy	
DSP	dsp.ti.com	Industrial	www.ti.com/industrial	
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical	
Interface	interface.ti.com	Security	www.ti.com/security	
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics- defense	
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps	
RF/IF and ZigBee® Solutions	www.ti.com/lprf	TI E2E Community Home Page	e2e.ti.com	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright© 2011 Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated