DS16F95QML EIA-485/EIA-422A Differential Bus Transceiver



Literature Number: SNOSAN0A

300 krad(Si)



# DS16F95QML

# **EIA-485/EIA-422A Differential Bus Transceiver**

#### **General Description**

The DS16F95 Differential Bus Transceiver is a monolithic integrated circuit designed for bidirectional data communication on balanced multipoint bus transmission lines. The transceiver meets EIA standard RS-485 as well as RS-422A.

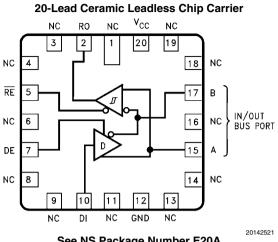
The DS16F95 offers improved performance due to the use of state-of-the-art L-FAST bipolar technology. The L-FAST technology allows for higher speeds and lower currents by utilizing extremely short gate delay times. Thus, the DS16F95QML features lower power, extended temperature range and improved specifications.

The DS16F95 combines a TRI-STATE® differential line driver and a differential input line receiver, both of which operate from a single 5.0V power supply. The driver and receiver have an active Enable that can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are internally connected to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus whenever the driver is disabled or when  $V_{CC} = 0V$ . These ports feature wide positive and negative common mode voltage ranges, making the device suitable for multipoint applications in noisy environments. The driver is designed to accommodate loads of up to 60 mA of sink or source current and features positive and negative current limiting in addition to thermal shutdown for protection from line fault conditions.

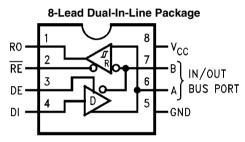
The DS16F95 can be used in transmission line applications employing the DS96F172 and the DS96F174 quad differential line drivers and the DS96F173 and DS96F175 quad differential line receivers.

#### **Features**

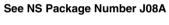
- Radiation guaranteed
- Meets EIA-485 and EIA-422A
- Meets SCSI-1 (5 MHZ) specifications
- Designed for multipoint transmission
- Wide positive and negative input/output bus voltage ranges
- Thermal shutdown protection
- Driver positive and negative current-limiting
- High impedance receiver input
- Receiver input hysteresis of 50 mV typical
- Operates from single 5.0V supply
- Reduced power consumption
- Pin compatible with DS3695 and SN75176A


| NS Part Number | SMD Part Number                 | NS Package<br>Number | Package Description |
|----------------|---------------------------------|----------------------|---------------------|
| DS16F95E/883   | 5962-89615012A                  | E20A                 | 20LD LCC            |
| DS16F95J/883   | 5962-8961501PA                  | J08A                 | 8LD CERDIP          |
| DS16F95W/883   |                                 | W10A                 | 10LD CERPACK        |
| DS16F95WFQMLV  | 5962F8961501VHA<br>300 krad(Si) | W10A                 | 10LD CERPACK        |
| DS16F95 MDR    |                                 | (Note 1)             | Bare Die            |
| DS16F95 MDS    |                                 | (Note 1)             | Bare Die            |

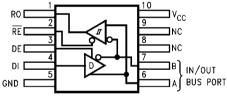
Ordering Information


Note 1: FOR ADDITIONAL DIE INFORMATION, PLEASE VISIT THE HI REL WEB SITE AT: www.national.com/analog/space/level\_die

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

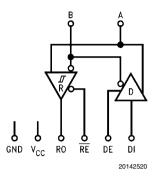

## **Connection Diagrams**




See NS Package Number E20A



20142501








See NS Package Number W10A

# Logic Diagram



## **Function Tables**

#### Driver

| Driver Input | Enable | Outputs |   |  |
|--------------|--------|---------|---|--|
| DI           | DE     | Α       | В |  |
| Н            | Н      | Н       | L |  |
| L            | Н      | L       | Н |  |
| Х            | L      | Z       | Z |  |

#### Receiver

| Differential Inputs    | Enable | Output |
|------------------------|--------|--------|
| A–B                    | RE     | RO     |
| V <sub>ID</sub> ≥ 0.2V | L      | Н      |
| $V_{ID} \leq -0.2V$    | L      | L      |
| Х                      | Н      | Z      |

H = High Level L = Low Level X = Immaterial Z = High Impedance (Off)

# Absolute Maximum Ratings (Note 2)

| Storage Temperature Range                           | $-65^{\circ}C \le T_A \le +175^{\circ}C$ |
|-----------------------------------------------------|------------------------------------------|
| Lead Temperature                                    |                                          |
| (Soldering, 60 sec.)                                | 300°C                                    |
| Maximum Power Dissipation at 25°C ( <i>Note 3</i> ) |                                          |
| LCC 'E' Package                                     | 1800 mW                                  |
| Cerdip 'J' Package                                  | 1274 mW                                  |
| Cerpack 'W' Package                                 | 725 mW                                   |
| Supply Voltage                                      | 7.0V                                     |
| Input Voltage (Bus Terminal)                        | +15V/–10V                                |
| Enable Input Voltage                                | 5.5V                                     |
| Junction Temperature (TJ)                           | +175°C                                   |
| Thermal Resistance                                  |                                          |
| θ <sub>JA</sub>                                     |                                          |
| LCC 'E' Package                                     | 83°C/W @ 0.5W                            |
| Cerdip 'J' Package                                  | 118°C/W @ 1.0W                           |
| Cerpack 'W' Package                                 | 207°C/W @ 0.5W                           |
| θ <sub>JC</sub>                                     |                                          |
| LCC 'E' Package                                     | 17°C/W                                   |
| Cerdip 'J' Package                                  | 14°C/W                                   |
| Cerpack 'W' Package                                 | 18°C/W                                   |
| ESD Tolerance ( <i>Note 4</i> )                     | 500V                                     |

# **Recommended Operating Conditions**

| Supply Voltage (V <sub>CC</sub> )       | 4.50 to 5.50V   |
|-----------------------------------------|-----------------|
| Voltage at Any Bus Terminal             |                 |
| (Separately or Common Mode)             |                 |
| (V <sub>I</sub> or V <sub>CM</sub> )    | -7.0V to +12V   |
| Differential Input Voltage (VID)        | -7.0V to ±12V   |
| Output Current HIGH (I <sub>ОН</sub> )  |                 |
| Driver                                  | -60mA           |
| Receiver                                | -400µA          |
| Output Current LOW (I <sub>OI</sub> )   |                 |
| Driver                                  | 60mA            |
| Receiver                                | 16mA            |
| Operating Temperature (T <sub>A</sub> ) | -55°C to +125°C |

## **Quality Conformance Inspection**

MIL-STD-883, Method 5005 - Group A

| Subgroup | Description         | Temp (°C) |
|----------|---------------------|-----------|
| 1        | Static tests at     | +25       |
| 2        | Static tests at     | +125      |
| 3        | Static tests at     | -55       |
| 4        | Dynamic tests at    | +25       |
| 5        | Dynamic tests at    | +125      |
| 6        | Dynamic tests at    | -55       |
| 7        | Functional tests at | +25       |
| 8A       | Functional tests at | +125      |
| 8B       | Functional tests at | -55       |
| 9        | Switching tests at  | +25       |
| 10       | Switching tests at  | +125      |
| 11       | Switching tests at  | -55       |

# DC - Driver Electrical Characteristics (Note 11)

The following conditions apply to all parameters, unless otherwise specified.  $V_{\text{CC}}$  = 5.5V

| Symbol                        | Parameter                   | Conditions                                                                    | Notes             | Min  | Max | Unit | Sub-<br>group |
|-------------------------------|-----------------------------|-------------------------------------------------------------------------------|-------------------|------|-----|------|---------------|
|                               |                             | $V_{\rm CC} = 5.5 \text{V}, I_{\rm O} = 0 \text{A}, V_{\rm IN} = .8 \text{V}$ |                   |      | 6   | v    | 1, 2, 3       |
| VOD1                          | Differential Vout           | $V_{CC} = 5.5V, I_0 = 0A, V_{IN} = 2V$                                        |                   |      | 6   | V    | 1, 2, 3       |
|                               | Differential Vout           | $V_{\rm CC} = 4.5 \text{V}, \text{R}_{\rm L} = 100 \Omega$                    |                   | 2    |     | V    | 1, 2, 3       |
| VOD2                          | Figure 1                    | $V_{CC} = 4.5V, R_{L} = 54\Omega$                                             |                   | 1.5  |     | V    | 1, 2, 3       |
|                               |                             | $V_{CC} = 4.5V, R_{L} = 100\Omega$                                            |                   | -200 | 200 | mV   | 1, 2, 3       |
| $\Delta V_{OD}$               | Change In Differential Vout | $V_{\rm CC} = 4.5 V, R_{\rm L} = 54 \Omega$                                   | ( <i>Note 5</i> ) | -200 | 200 | mV   | 1, 2, 3       |
|                               |                             | $V_{\rm CC} = 4.5 \text{V}, \text{R}_{\rm L} = 100 \Omega$                    |                   | -200 | 200 | mV   | 1, 2, 3       |
| $\Delta V_{OC}$               | Change In Common Mode Vout  | $V_{\rm CC} = 4.5 \text{V}, \text{R}_{\rm L} = 54 \Omega$                     | ( <i>Note 5</i> ) | -200 | 200 | mV   | 1, 2, 3       |
| .,                            |                             | R <sub>L</sub> = 100Ω                                                         |                   |      | 3   | V    | 1, 2, 3       |
| V <sub>oc</sub>               | Common Mode Vout            | <br>R <sub>L</sub> = 54Ω                                                      |                   |      | 3   | V    | 1, 2, 3       |
| I <sub>IH</sub>               | Logical "1" Input Current   | $V_1 = 2.4V$                                                                  |                   |      | 20  | uA   | 1, 2, 3       |
|                               |                             | Output Disable, V <sub>O</sub> = 12V                                          |                   |      | 1   | mA   | 1, 2, 3       |
|                               |                             | Output Disable, V <sub>O</sub> = -7V                                          | ( <i>Note 6</i> ) | -0.8 |     | mA   | 1, 2, 3       |
| I <sub>O</sub> Output Current | Output Current              | V <sub>CC</sub> = 0, Output Disable,<br>V <sub>O</sub> = 12V                  |                   |      | 1   | mA   | 1, 2, 3       |
|                               |                             | $V_{CC} = 0$ , Output Disable,<br>$V_{O} = -7V$                               | (Note 6)          | -0.8 |     | mA   | 1, 2, 3       |
|                               |                             | $V_{IN} = 3V, V_{OUT} = V_{CC}$                                               |                   |      | 150 | mA   | 1, 2, 3       |
|                               |                             | V <sub>IN</sub> = 3V, V <sub>OUT</sub> = -7V                                  | ( <i>Note 6</i> ) | -250 |     | mA   | 1, 2, 3       |
|                               |                             | $V_{IN} = 3V, V_{OUT} = 0V$                                                   | (Note 6)          | -150 |     | mA   | 1, 2, 3       |
| 1                             | Output Short Circuit        | V <sub>IN</sub> = 3V, V <sub>OUT</sub> = 12V                                  |                   |      | 250 | mA   | 1, 2, 3       |
| I <sub>OS</sub>               | Supul Short Circuit         | V <sub>IN</sub> = 0V, V <sub>OUT</sub> = 12V                                  |                   |      | 250 | mA   | 1, 2, 3       |
|                               |                             | $V_{IN} = 0V, V_{OUT} = V_{CC}$                                               |                   |      | 150 | mA   | 1, 2, 3       |
|                               |                             | V <sub>IN</sub> = 0V, V <sub>OUT</sub> = -7V                                  | ( <i>Note 6</i> ) | -250 |     | mA   | 1, 2, 3       |
|                               |                             | $V_{IN} = 0V, V_{OUT} = 0V$                                                   | ( <i>Note 6</i> ) | -150 |     | mA   | 1, 2, 3       |
| V <sub>OH</sub>               | Logical "1" Output Voltage  | V <sub>CC</sub> = 4.5V, I <sub>O</sub> = -20mA                                |                   | 3    |     | V    | 1, 2, 3       |
| V <sub>OL</sub>               | Logical "0" Output Voltage  | V <sub>CC</sub> = 4.5V, I <sub>O</sub> = 20mA                                 |                   |      | 2   | V    | 1, 2, 3       |
| VOD3                          | Differential Vout           | $V_{CM} = -7V$ to 12V                                                         |                   | 1    |     | V    | 1, 2, 3       |

## DC - Receiver Electrical Characteristics (Note 11)

The following conditions apply to all parameters, unless otherwise specified.  $V_{CC} = 5.5V$ 

| Symbol                           | Parameter                                                    | Conditions                                                                                     | Notes    | Min | Max | Unit    | Sub-<br>group |
|----------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------|-----|-----|---------|---------------|
| V <sub>OH</sub>                  | Logical "1" Output Voltage<br>Figure 2                       | V <sub>CC</sub> = 4.5V, V <sub>LD</sub> = 200mV,<br>I <sub>OH</sub> = -400uA                   |          | 2.5 |     | V       | 1, 2, 3       |
| V <sub>OL</sub>                  | Logical "0" Output Voltage                                   | V <sub>CC</sub> = 4.5V, V <sub>LD</sub> = -200mV,<br>I <sub>OL</sub> = 8mA                     |          |     | .45 | V       | 1, 2, 3       |
| ♥ OL                             | Figure 2                                                     | $V_{CC} = 4.5V, V_{LD} = -200mV,$<br>$I_{OL} = 16mA$                                           |          |     | .5  | v       | 1, 2, 3       |
|                                  |                                                              | Untested Input = 0V, V <sub>I</sub> = 12V                                                      |          |     | 1   | mA      | 1, 2, 3       |
|                                  |                                                              | Untested Input = 0V, $V_1 = -7V$                                                               | (Note 6) | 8   |     | mA      | 1, 2, 3       |
| I <sub>I</sub>                   | Line Input Current                                           | $V_{CC} = 0V$ , Untested Input = 0V,<br>$V_I = 12V$                                            | (Note 6) |     | 1   | mA      | 1, 2, 3       |
|                                  |                                                              | $V_{CC} = 0V$ , Untested Input = 0V,<br>V <sub>I</sub> = -7V                                   |          | 8   |     | mA      | 1, 2, 3       |
| I <sub>IH</sub>                  | Logical "1" Input Current                                    | V <sub>I</sub> = 2.7V (Receiver)                                                               |          |     | 20  | uA      | 1, 2, 3       |
|                                  |                                                              | Untested Input = 0V, $V_1 = 12V$                                                               | (Note 7) | 10  |     | KΩ      | 1, 2, 3       |
|                                  |                                                              | Untested Input = 0V, $V_1 = -7V$                                                               | (Note 7) | 10  |     | KΩ      | 1, 2, 3       |
| R <sub>IN</sub> Input Resistance | Input Resistance                                             | $V_{CC} = 0V$ , Untested Input = 0V,<br>V <sub>1</sub> = 12V                                   | (Note 7) | 10  |     | ΚΩ      | 1, 2, 3       |
|                                  | $V_{CC} = 0V$ , Untested Input = 0V,<br>V <sub>1</sub> = -7V | (Note 7)                                                                                       | 10       |     | ΚΩ  | 1, 2, 3 |               |
|                                  |                                                              | $V_{1} = .4V$                                                                                  |          | -20 | 20  | uA      | 1, 2, 3       |
| l <sub>oz</sub>                  | High Impedance State                                         | V <sub>1</sub> = 2.4V                                                                          |          | -20 | 20  | uA      | 1, 2, 3       |
| I <sub>os</sub>                  | Output Short Circuit                                         | $V_{IN} = 1V, V_{OUT} = 0V$                                                                    |          | -85 | -15 | mA      | 1, 2, 3       |
|                                  | Differential Input High Threshold                            | $V_{CC} = 4.5V, V_{O} = 2.5V,$<br>$V_{CM} = 12V \& 0V \& -7V,$<br>$I_{O} =4mA$                 |          |     | .2  | v       | 1, 2, 3       |
| V <sub>TH</sub>                  | Differential Input High Threshold                            | V <sub>CC</sub> = 5.5V, Vo = 2.5V,<br>V <sub>CM</sub> = 12V & 0V & -7V,<br>I <sub>O</sub> =4mA |          |     | .2  | v       | 1, 2, 3       |
| V <sub>T</sub> 1                 | Differential Input Low Threshold                             | $V_{CC} = 4.5V, V_{O} = .5V,$<br>$V_{CM} = 12V \& 0V \& -7V,$<br>$I_{O} = 8mA$                 |          | 2   |     | v       | 1, 2, 3       |
| ν <sub>T</sub> ι                 |                                                              | $V_{CC} = 5.5V, V_{O} = .5V,$<br>$V_{CM} = 12V \& 0V \& -7V,$<br>$I_{O} = 8mA$                 |          | 2   |     | v       | 1, 2, 3       |
| V <sub>TH</sub> + -              |                                                              | $V_{\rm CC} = 4.5 V, V_{\rm CM} = 0 V$                                                         |          | 35  |     | mV      | 1, 2, 3       |
| (V <sub>TH</sub> -)              | Hyteresis                                                    | $V_{CC} = 5.5V, V_{CM} = 0V$                                                                   |          | 35  |     | mV      | 1, 2, 3       |

## DC - Both Driver and Receiver Electrical Characteristics (Note 11)

The following conditions apply to all parameters, unless otherwise specified. V<sub>CC</sub> = 5.5V

| Symbol          | Parameter                                   | Conditions                                                | Notes             | Min  | Max | Unit | Sub-<br>group |
|-----------------|---------------------------------------------|-----------------------------------------------------------|-------------------|------|-----|------|---------------|
| I <sub>CC</sub> | Supply Current I <sub>CC</sub> Both Disable | $\overline{\text{RE}}$ = 2V, $\overline{\text{DE}}$ = .8V |                   |      | 25  | mA   | 1, 2, 3       |
| I <sub>CC</sub> | Supply Current I <sub>CC</sub> Both Enable  | $\overline{\text{RE}}$ =.8V, $\overline{\text{DE}}$ = 2V  |                   |      | 28  | mA   | 1, 2, 3       |
| V <sub>IC</sub> | Input Clamp Volt                            | I <sub>I</sub> = -18mA                                    |                   | -1.3 |     | V    | 1, 2, 3       |
| V <sub>IH</sub> | Logical "1" Input Voltage                   |                                                           |                   | 2    |     | V    | 1, 2, 3       |
| V <sub>IL</sub> | Logical "0" Input Voltage                   |                                                           |                   |      | .8  | V    | 1, 2, 3       |
| V <sub>IH</sub> | Logical "1" Enable Input Voltage            |                                                           |                   | 2    |     | V    | 1, 2, 3       |
| V <sub>IL</sub> | Logical "0" Enable Input Voltage            |                                                           |                   |      | .8  | V    | 1, 2, 3       |
| I <sub>IL</sub> | Logical "0" Input Current                   | V <sub>1</sub> = .4V                                      | ( <i>Note 6</i> ) | -50  |     | uA   | 1, 2, 3       |

### AC - Driver Electrical Characteristics (Note 11)

The following conditions apply to all parameters, unless otherwise specified.

 $\rm V_{CC} = 5V, \, PRR = 1MH_Z, \, T_R \leq T_F \leq 6nS, \, 50\% \; duty \; cycle, \, AMP = 3V, \, VL_O, \, Z_{OUT} = 50\Omega$ 

| Symbol            | Parameter                      | Conditions            | Notes     | Min | Max | Unit | Sub-<br>group |
|-------------------|--------------------------------|-----------------------|-----------|-----|-----|------|---------------|
| t <sub>DD</sub>   | Differential Output Delay Time | R <sub>L</sub> = 60Ω  | (Note 10) | 8   | 25  | nS   | 9             |
|                   | Figure 3                       |                       | (Note 10) | 8   | 30  | nS   | 10, 11        |
|                   | Differential Output Transition | ( <i>Note 9</i> )     |           | 8   | 25  | nS   | 9             |
| t <sub>TD</sub>   | Time<br><i>Figure 3</i>        | R <sub>L</sub> = 60Ω  | (Note 10) | 8   | 30  | nS   | 10, 11        |
|                   | Propagation Delay Time Low to  |                       |           | 6   | 18  | nS   | 9             |
| t <sub>PLH</sub>  | High<br><i>Figure 4</i>        | R <sub>L</sub> = 27Ω  |           | 6   | 25  | nS   | 10, 11        |
|                   | Propagation Delay Time high to |                       |           | 6   | 18  | nS   | 9             |
| t <sub>PHL</sub>  | Low<br>Figure 4                | $R_L = 27\Omega$      |           | 6   | 25  | nS   | 10, 11        |
| +                 | Output Enable Time to H        | R <sub>μ</sub> = 110Ω |           |     | 35  | nS   | 9             |
| t <sub>PZH</sub>  | Figure 5                       | $n_{L} = 11052$       |           |     | 45  | nS   | 10, 11        |
| +                 | Output Enable Time to L        | R <sub>I</sub> = 110Ω |           |     | 40  | nS   | 9             |
| t <sub>PZL</sub>  | Figure 6                       | $n_{L} = 11032$       |           |     | 50  | nS   | 10, 11        |
| t <sub>PHZ</sub>  | Output Disable Time to H       | RL = 110Ω             |           |     | 30  | nS   | 9             |
|                   | Figure 5                       |                       |           |     | 40  | nS   | 10, 11        |
| +                 | Output Disable Time to L       | R <sub>I</sub> = 110Ω |           |     | 30  | nS   | 9             |
| t <sub>PLZ</sub>  | Figure 6                       |                       |           |     | 40  | nS   | 10, 11        |
| т                 | Differential Output Skew Time  |                       |           |     | 6   | nS   | 9             |
| T <sub>SKEW</sub> | Figure 3                       |                       |           |     | 12  | nS   | 10, 11        |

### AC - Receiver Electrical Characteristics (Note 11)

The following conditions apply to all parameters, unless otherwise specified.

 $V_{CC}$  = 5V, PRR = 1MH<sub>Z</sub>,  $T_R \le T_F \le 6nS$ , 50% duty cycle, AMP = 3V, VL<sub>O</sub>,  $Z_{OUT}$  = 50 $\Omega$ 

| Symbol                                 | Parameter                      | Conditions            | Notes                 | Min | Max | Unit | Sub-<br>group |
|----------------------------------------|--------------------------------|-----------------------|-----------------------|-----|-----|------|---------------|
| +                                      | Propagation Delay Time Low to  | C <sub>1</sub> = 15pF |                       | 10  | 27  | nS   | 9             |
| t <sub>PLH</sub>                       | High <i>Figure 7</i>           |                       |                       | 10  | 38  | nS   | 10, 11        |
| +                                      | Propagation Delay Time High to | C <sub>1</sub> = 15pF |                       | 10  | 27  | nS   | 9             |
| t <sub>PHL</sub>                       | Low <i>Figure 7</i>            |                       |                       | 10  | 38  | nS   | 10, 11        |
| +                                      | Output Enable Time to H        | C <sub>1</sub> = 15pF |                       |     | 20  | nS   | 9             |
| t <sub>PZH</sub>                       | ZH Figure 8                    |                       |                       |     | 30  | nS   | 10, 11        |
| +                                      | Output Enable Time to L        | C <sub>L</sub> = 15pF |                       |     | 20  | nS   | 9             |
| t <sub>PZL</sub>                       | Figure 8                       |                       |                       |     | 30  | nS   | 10, 11        |
| l+ _+ I                                | Output to Output Delay Time    |                       |                       |     | 8   | nS   | 9             |
| lt <sub>PLH</sub> - t <sub>PHL</sub> I | Figure 7                       |                       |                       |     | 16  | nS   | 10, 11        |
|                                        |                                | C <sub>L</sub> = 20pF | (Note 8)<br>(Note 16) |     | 30  | nS   | 9             |
| t <sub>PHZ</sub>                       | Output Disable Time From H     |                       | (Note 8)              |     | 40  | nS   | 10, 11        |
|                                        | Figure 8                       | С <sub>L</sub> = 5рF  | (Note 9)              |     | 20  | nS   | 9             |
|                                        |                                |                       | ( <i>Note 8</i> )     |     | 30  | nS   | 10, 11        |
| +                                      | Output Disable Time From L     | C = 5nE               |                       |     | 20  | nS   | 9             |
| t <sub>PLZ</sub>                       | Figure 8                       | $C_{L} = 5pF$         |                       |     | 30  | nS   | 10, 11        |

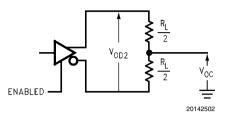
Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

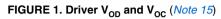
Note 3: Above  $T_A = 25^{\circ}C$ , derate E package 12.1mW°C, J package 8.5 mW/°C, W & WG package 4.8mW/°C.

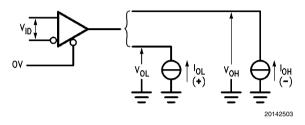
Note 4: Human body model,  $1.5k\Omega$  in series with 100pF

**Note 5:**  $\Delta |V_{OD}|$  and  $\Delta |V_{OC}|$  are the changes in magnitude of  $V_{OD}$  and  $V_{OC}$ , respectively, that occur when the input is changed from a high level to a low level. **Note 6:** Negative sign of the limits indicates the direction of the current flow only.

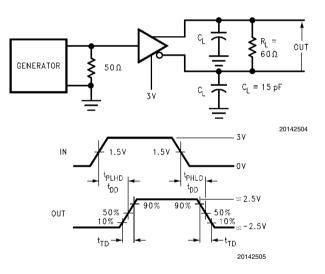
Note 7: R<sub>IN</sub> is guaranteed by testing "Line Input Current" (II).


Note 8: Testing at 20pF assures conformance to spec at 5pF.


Note 9: tTD = Non-inverting output rise time + inverting output fall time / 2, Non-inverting output fall time + inverting output rise time / 2.

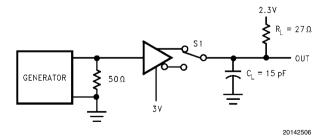

Note 10: Rise time 20% to 80%, Fall time 80% to 20%.

Note 11: Pre and post irradiation limits are identical to those listed under A C and DC electrical characteristics. These parts may be dose rate sensitive in a space environment and demonstrate enhanced low dose rate effect. Radiation end point limits for the noted parameters are guaranteed only for the conditions as specified in MIL-STD 883, Method 1019, condition A.


### **Parameter Measurement Information**

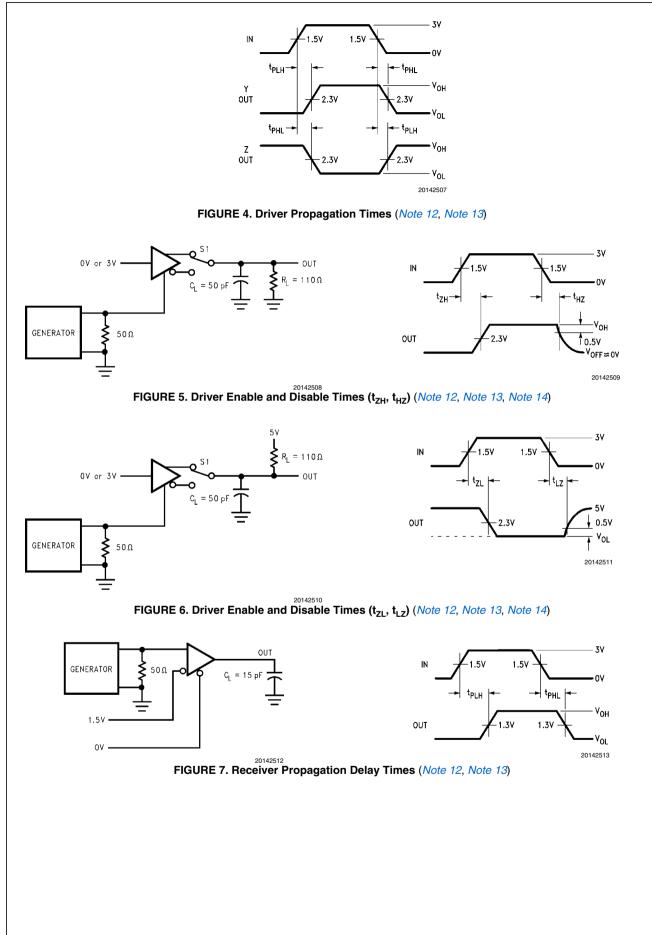


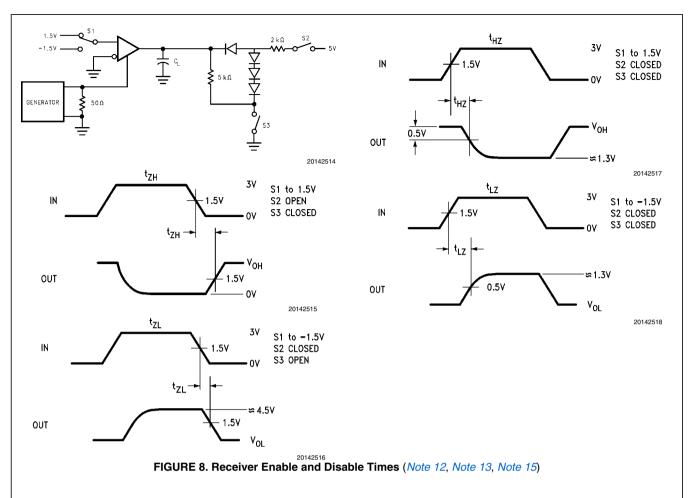










 $\mathbf{t}_{\mathsf{SKEW}} = |\mathbf{t}_{\mathsf{PLHD}} - \mathbf{t}_{\mathsf{PHLD}}|$ 


#### FIGURE 3. Driver Differential Output Delay and Transition Times (Note 12, Note 14)



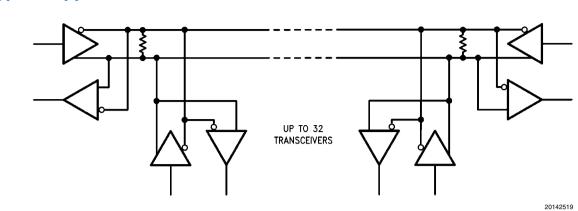
DS16F95QML







Note 12: The input pulse is supplied by a generator having the following characteristics: PRR = 1.0 MHz, 50% duty cycle,  $t_r \le 6.0$  ns,  $t_f \le 6.0$  ns,  $Z_O = 50\Omega$ .

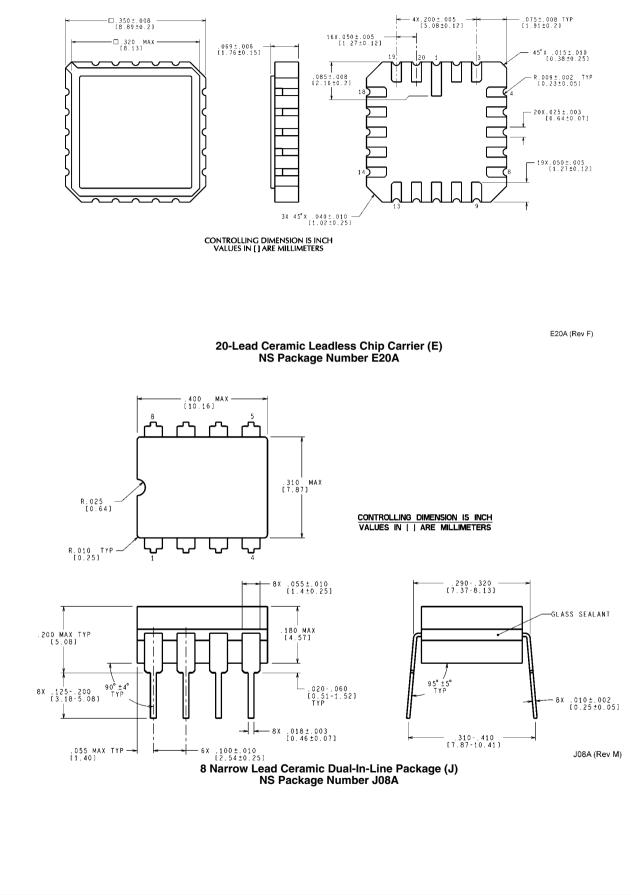

Note 13: C<sub>L</sub> includes probe and stray capacitance.

Note 14: DS16F95 Driver enable is Active-High.

Note 15: All diodes are 1N916 or equivalent.

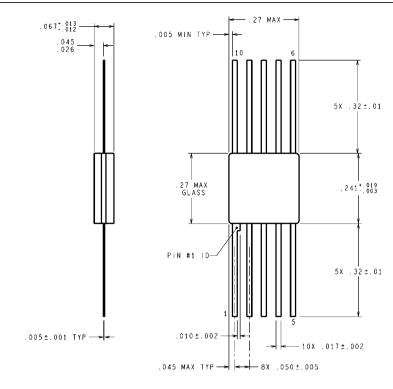
Note 16: Testing at 20 pF assures conformance to 5 pF specification.

## **Typical Application**




The line should be terminated at both ends in its characteristic impedance, typically  $120\Omega$ . Stub lengths off the main line should be kept as short as possible.

# **Revision History**


| Date Released | Revision | Section                                                                                                                                                                              | Changes                                                                                                                                                                                                                        |
|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/23/2005     | A        | New Release, Corporate format                                                                                                                                                        | 1 MDS data sheet converted into Corporate data<br>sheet format. MDS data sheet MNDS16F95-X-<br>RH, Rev. 0A1 will be Archived.                                                                                                  |
| 10/26/2010    | В        | Features, Ordering Table, Connection<br>Diagrams W pkg, Absolute Ratings,<br>Electricals - DC Receiver V <sub>T</sub> 1, AC Driver<br>conditions, Physical Dimensions Mkt<br>drawing | Update with current device information and format.<br>Correction to rad info., Code K NSID's removed,<br>removed reference to WG pkg, typo correction to<br>conditions, Removed WG pkg drawing. Revision<br>A will be Archived |
|               |          |                                                                                                                                                                                      |                                                                                                                                                                                                                                |

#### Physical Dimensions inches (millimeters) unless otherwise noted



www.national.com

DS16F95QML



DIMENSIONS ARE IN INCHES

10-Lead Ceramic Flatpak (W) NS Package Number W10A W10A (Rev H)

# Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

| Products                       |                              | Design Support                  |                                |
|--------------------------------|------------------------------|---------------------------------|--------------------------------|
| Amplifiers                     | www.national.com/amplifiers  | WEBENCH® Tools                  | www.national.com/webench       |
| Audio                          | www.national.com/audio       | App Notes                       | www.national.com/appnotes      |
| Clock and Timing               | www.national.com/timing      | Reference Designs               | www.national.com/refdesigns    |
| Data Converters                | www.national.com/adc         | Samples                         | www.national.com/samples       |
| Interface                      | www.national.com/interface   | Eval Boards                     | www.national.com/evalboards    |
| LVDS                           | www.national.com/lvds        | Packaging                       | www.national.com/packaging     |
| Power Management               | www.national.com/power       | Green Compliance                | www.national.com/quality/green |
| Switching Regulators           | www.national.com/switchers   | Distributors                    | www.national.com/contacts      |
| LDOs                           | www.national.com/ldo         | Quality and Reliability         | www.national.com/quality       |
| LED Lighting                   | www.national.com/led         | Feedback/Support                | www.national.com/feedback      |
| Voltage References             | www.national.com/vref        | Design Made Easy                | www.national.com/easy          |
| PowerWise® Solutions           | www.national.com/powerwise   | Applications & Markets          | www.national.com/solutions     |
| Serial Digital Interface (SDI) | www.national.com/sdi         | Mil/Aero                        | www.national.com/milaero       |
| Temperature Sensors            | www.national.com/tempsensors | SolarMagic™                     | www.national.com/solarmagic    |
| PLL/VCO                        | www.national.com/wireless    | PowerWise® Design<br>University | www.national.com/training      |

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

#### Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com



National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959

National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products               |                                 | Applications                  |                                   |
|------------------------|---------------------------------|-------------------------------|-----------------------------------|
| Audio                  | www.ti.com/audio                | Communications and Telecom    | www.ti.com/communications         |
| Amplifiers             | amplifier.ti.com                | Computers and Peripherals     | www.ti.com/computers              |
| Data Converters        | dataconverter.ti.com            | Consumer Electronics          | www.ti.com/consumer-apps          |
| DLP® Products          | www.dlp.com                     | Energy and Lighting           | www.ti.com/energy                 |
| DSP                    | dsp.ti.com                      | Industrial                    | www.ti.com/industrial             |
| Clocks and Timers      | www.ti.com/clocks               | Medical                       | www.ti.com/medical                |
| Interface              | interface.ti.com                | Security                      | www.ti.com/security               |
| Logic                  | logic.ti.com                    | Space, Avionics and Defense   | www.ti.com/space-avionics-defense |
| Power Mgmt             | power.ti.com                    | Transportation and Automotive | www.ti.com/automotive             |
| Microcontrollers       | microcontroller.ti.com          | Video and Imaging             | www.ti.com/video                  |
| RFID                   | www.ti-rfid.com                 |                               |                                   |
| OMAP Mobile Processors | www.ti.com/omap                 |                               |                                   |
| Wireless Connectivity  | www.ti.com/wirelessconnectivity |                               |                                   |
|                        |                                 | u Hama Dawa                   | a O a Al a a m                    |

**TI E2E Community Home Page** 

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated