

FXTH87EK116 Tire pressure monitor sensor Rev. 2.1 — 25 June 2021

Product data sheet

General description 1

The FXTH87EK116 is a small (7 x 7 mm), fully integrated tire pressure monitoring sensors (TPMS) that provides low transmitting power consumption, large customer memory size and a dual-axis accelerometer architecture. The FXTH87EK116 TPMS solution integrates an 8-bit microcontroller (MCU), a pressure sensor, an XZ-axis accelerometer, and an RF transmitter.

2 Features and benefits

- · Long battery service life
- · Power optimization software
- Pin-for-pin electrical connections compatible with FXTH87-based customer applications
- Firmware subroutines compatible with FXTH87-based customer software
- · Pressure sensor with one of three calibrated pressure ranges
- Temperature sensor
- · Dual XZ-axis accelerometer with adjustable offset option
- Voltage reference measured by ADC10
- Six-channel, 10-bit analog-to-digital converter (ADC10) with two external I/O inputs
- 8-bit MCU
 - S08 Core with SIM and interrupt
 - 512 RAM
 - 16 kB FLASH
 - 64-byte, low-power, parameter registers
- Dedicated state machines to sequence routine measurement and transmission processes for reduced power consumption
- Internal 315-/434-MHz RF transmitter
 - External crystal oscillator
 - PLL-based output with fractional-n divider
 - OOK and FSK modulation capability
 - Programmable data rate generator
 - Manchester, Bi-Phase, or NRZ data encoding
 - 256-bit RF data buffer variable length interrupt
 - Direct access to RF transmitter from MCU for unique formats
 - Low-power consumption
- · Differential input LF detector/decoder on independent signal pins

- Seven multipurpose GPIO pins
 - Four pins can be connected to optional internal pullups/pulldowns and STOP4 wakeup interrupt
 - Two of seven pins can be connected to a channel on the ADC10
 - Two of seven pins can be connected to a channel on the TPM1
- Real-time Interrupt driven by LFO with interrupt intervals of 2, 4, 8, 16, 32, 64, or 128 ms
- · Free-running counter, low-power, wake-up timer and periodic reset driven by LFO
- · Watchdog timeout with selectable times and clock sources
- Two-channel general-purpose timer/PWM module (TPM1)
- Internal oscillators
 - MCU bus clock of 0.5, 1, 2, and 4 MHz (1, 2, 4, and 8 MHz HFO)
 - Low frequency, low-power time clock (LFO) with 1 ms period
 - Medium frequency, controller clock (MFO) of 8 µs period
- · Low-voltage detection
- Normal temperature restart in hardware (over- or under-temperature detected by software)

3 Ordering information

Table 1. Ordering information

Type number	Package								
	Name	Description	Version						
FXTH87EK116	HQFN24	Plastic thermally enhanced quad flat non-leaded package; 24 terminals; 1.0 mm pitch; 7 mm x 7 mm x 2.2 mm body	SOT1575-1 ^[1]						

3.1 Ordering options

Table 2. Ordering information

Part number	Pressure Range	ge Accelerometer X-axis Rang		Z-axis Range	Z-axis Range Code0 Firmware	
FXTH87EK116T1	90 kPa to 1500 kPa	XZ	-80 g to + 90 g	-215 g to +305 g	\$24	\$BD

4 Block diagram

<u>Figure 1</u> shows the block diagram for the FXTH87EK116 device. This diagram covers all the main blocks mentioned above and their main signal interactions. In order to keep the block diagram clear and simple, power management controls and bus control signals are not shown.

5 Pinning information

5.1 Pinning

Figure 2 shows the pinout for the FXTH87EK116 device QFN package with the pressure port side up. Figure 3 shows the orientation of the internal Z-axis accelerometer.

5.2 Pin description

Or mark all	Dim	Description
Symbol	Pin	Description
PTB1	1	General-purpose I/O
PTA2	2	General-purpose I/O
PTA1	3	General-purpose I/O
PTA0	4	General-purpose I/O
RESET	5	External reset
VSS	6	Digital circuit ground
VDD	7	Digital circuit supply voltage
VDDA	8	Analog circuit supply voltage
VSSA	9	Analog circuit ground
RFVSS	10	RF output amplifier ground
RF	11	RF energy data
VREG	12	External stabilization for analog circuits internal regulator
X1	13	External crystal
X0	14	External crystal
BKGD / PTA4	15	BACKGROUND DEBUG mode enable
LFB	16	LF receiver differential input channel B
LFA	17	LF receiver differential input channel A
PTA3	18	General-purpose I/O
N/C	19, 20, 21, 22, 23	No Connect: Do not connect PCB pads to signal traces, power/ground, or multi-layer via.
PTB0	24	General-purpose I/O

6 Limiting values

Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it. The device contains circuitry to protect the inputs against damage from high static voltages; however, do not apply voltages higher than those shown in <u>Table 4</u>. Keep V_{IN} and V_{OUT} within the range V_{SS} \leq (V_{IN} or V_{OUT}) \leq V_{DD}.

Table 4. Maximum ratings

#	Rating	Symbol	Value	Unit	Notes
100	Supply Voltage (V _{DD} , AV _{DD})	V _{DD}	-0.3 to +3.8	V	<u>C</u>
	Input Voltage				
101	X1	V _{IN}	–0.3 to V _{DD} +0.3	V	<u>C</u>
102	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1	V _{IN}	–0.3 to V _{DD} +0.3	V	<u>C</u>
103	BKGD/PTA4, RESET	V _{IN}	–0.3 to V _{DD} +0.3	V	<u>C</u>
104	LFA, LFB	V _{IN}	–0.3 to V _{DD} +0.3	V	<u>C</u>

Tire pressure monitor sensor

#	Rating	Symbol	Value	Unit	Notes
	Input Current				
105	X1	I _{IN}	±10	mA	<u>C</u>
106	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1	I _{IN}	±10	mA	<u>C</u>
107	BKGD/PTA4, RESET	I _{IN}	±10	mA	<u>C</u>
108	LFA, LFB	I _{IN}	±10	mA	<u>C</u>
	Substrate Current Injection				
	Current from any pin to V_{SS} – 0.3 VDC				
109	XI, PTA0, PTA1, PTA2, PTA3, PTB0, PTB1, BKGD/PTA4, RESET	I _{SUB}	600	μΑ	<u>C</u>
110	LFA, LFB	I _{SUB}	2	mA	<u>C</u>
	Latchup Current				
111	Current to/from any pin to supply rails + 0.3 VDC	I _{LATCH}	±100	mA	<u>C</u>
	Electrostatic Discharge				
112	Human Body Model (HBM), all pins other than RF	V _{ESD}	±2000	V	<u>C</u>
113	Human Body Model (HBM), RF pin	V _{ESD}	±3000	V	<u>C</u>
114	Charged Device Model (CDM)	V _{ESD}	±500	V	<u>C</u>
115	Maximum Storage Temperature Range	T _{STG}	–50 to +150	°C	<u>C</u>

Table 4. Maximum ratings...continued

7 Recommended operating conditions

This section specifies the range of operation in terms of the limits normally expected in the application.

Table 5.	Operating	range
----------	-----------	-------

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Operating Supply Voltage ($V_{DD} = AV_{DD}$)		VL		V _H		
	Measurements						
200	Pressure, Temperature, Acceleration	V _{DD}	2.3	3.0	3.6	V	<u>B</u>
201	Voltage	V _{DD}	1.8	3.0	3.6	V	<u>B</u>
202	LFR Operation (–20 < T _A < +85 °C)	V _{DD}	2.3	3.0	3.6	V	<u>B</u>
203	RF Transmissions	V _{DD}	1.8	3.0	3.6	V	<u>B</u>
	MCU operation (CPU, ADC10, RAM, TPM1)						
204	FLASH write (-40 °C to +125 °C)	V _{DD}	2.3	3.0	3.6	V	<u>B</u>
205	Content deleted.						
206	FLASH read	V _{DD}	1.8	3.0	3.6	V	<u>B</u>
207	Parameter registers data retention	V _{DD}	1.2	—	—	V	<u>B</u>
	Operating Temperature Range		TL		T _H		

Tire pressure monitor sensor

Table 5. Operating range...continued

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
208	Continuous Temperature Range	T _A	-40		+125	°C	<u>C</u>
209	Temperature Restart mode ^[1]	T _R			+150	°C	<u>C</u>

[1] Total of three hours over the life of the device.

8 Characteristics

Tables in the electrical and mechanical specification sections of this data sheet may contain hyperlink note references in the last cell of the row. The hyperlink note references are linked to and defined in <u>Table 6</u>.

Table 6. Electrical and mechanical specification note definition table

Note identifier	Description
А	Parameters tested 100 % at final test.
В	Parameters tested 100 % at unit probe.
С	Verified by characterization, not tested in production.
D	For information only, may be determined by simulation.

8.1 Electrical characteristics

Table 7. Electrical characteristics

1.8 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Output High Voltage (I _{Load} = 5 mA)						
300	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1	V _{OH}	V _{DD} – 0.35		_	V	B
	Output Low Voltage (I _{Load} = –5 mA)						
301	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1	V _{OL}	_		0.35	V	<u>B</u>
	Input High Voltage (2.3 < $V_{DD} \le V_{H}$)						
302	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1, BKGD/PTA4	V _{IH}	0.7 x V _{DD}		_	V	B
	Input High Voltage ($V_L \le V_{DD} \le 2.3$)						
303	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1, BKGD/PTA4	V _{IH}	0.85 x V _{DD}		_	V	<u>C</u>
	Input Low Voltage (2.3 < $V_{DD} \le V_H$)						
304	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1, BKGD/PTA4	V _{IL}	V _{SS}		0.35 x V _{DD}	V	B
	Input Low Voltage ($V_L \le V_{DD} \le 2.3$)						
305	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1, BKGD/PTA4	V _{IL}	V _{SS}		0.28 x V _{DD}	V	<u>C</u>

Tire pressure monitor sensor

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Input High Current (at min V _{IH})						
306	BKGD/PTA4	I _{IH}	-1		+1	μA	A
307	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1 (pulldown off)	I _{IH}	-1		+1	μA	B
308	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1 (pulldown active)	I _{IH}	0	—	+120	μA	B
	Input Low Current (at max V _{IL})						
309	BKGD/PTA4	IIL	-120		0	μA	<u>A</u>
310	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1 (pullup off)	IIL	-1	—	+1	μA	<u>B</u>
311	PTA0, PTA1, PTA2, PTA3, PTB0, PTB1 (pullup active)	I	-120	—	0	μA	B
	Pin Capacitance (3 V)						
312	BKGD/PTA4, PTA0, PTA1, PTA2, PTA3, PTB0, PTB1	С	0		15	pF	<u>C</u>

Table 7. Electrical characteristics...continued

1.8 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified.

8.2 Power consumption (MCU)

Table 8. Power consumption

1.8 V \leq V_{DD} \leq 3.6 V, T_A = -40 °C to 125 °C unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Standby Supply Current						
	STOP1 mode, LFR, LVD, and TR all off						
400 401	Content deleted.						
402	T _A = 25 °C, V _{DD} = 1.8 V	I _{STDBY1}			0.20	μA	<u>C</u>
403	T _A = 25 °C, V _{DD} = 3.0 V	I _{STDBY1}		0.18	0.27	μA	<u>B</u>
404	T _A = 25 °C, V _{DD} = 3.6 V	I _{STDBY1}			0.35	μA	<u>C</u>
405	T _A = 70 °C, V _{DD} = 3.0 V	I _{STDBY1}			2.2	μA	<u>C</u>
406	$T_A = 125 \text{ °C}, 3.0 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	I _{STDBY1}			12.3	μA	<u>C</u>
407 408 409 410 411 412	Content deleted.						
	Standby Supply Current						
	STOP4 mode, LFR and TR off, LVD or RFLVD on						
413	T _A = -40 °C, V _{DD} = 3.0 V	I _{STDBY4}			85	μA	<u>C</u>
414	T _A = 0 °C, V _{DD} = 3.0 V	I _{STDBY4}			89	μA	<u>C</u>

Tire pressure monitor sensor

#	Characteristic	Symbol	Min	Тур	Мах	Units	Notes				
415	T _A = 25 °C, V _{DD} = 1.8 V	I _{STDBY4}	—	—	75	μA	<u>C</u>				
416	T _A = 25 °C, V _{DD} ≥ 3.0 V	I _{STDBY4}	—	75	91	μA	<u>B</u>				
417	T _A = 70 °C, V _{DD} = 3.0 V	I _{STDBY4}	_		91	μA	<u>C</u>				
418	$T_A = 125 \text{ °C}, 3.0 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	I _{STDBY4}	_		125	μA	<u>C</u>				
	MCU Operate Current (1.8 \leq V _{DD} \leq 3.0 V, -40 °C \leq T _A \leq 125 °C)										
	Instruction Speed = 0.333 MIP/f _{BUS}										
419	0.5 MHz f _{BUS} , BUSCLKS[1:0] = 11	I _{DD}	—	0.8	0.94	mA	<u>C</u>				
420	1 MHz f _{BUS} , BUSCLKS[1:0] = 10	I _{DD}	—	1.0	1.15	mA	<u>C</u>				
421	2 MHz f _{BUS} , BUSCLKS[1:0] = 01	I _{DD}	_	1.42	1.6	mA	<u>C</u>				
422	4 MHz f _{BUS} , BUSCLKS[1:0] = 00	I _{DD}	—	2.1	2.4	mA	A				
423	Content deleted.										
	Standby Current Adder for Temperature Restart										
424	Content deleted.										
425	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}, \text{ T}_{\text{A}} = 125 \text{ °C}$	ΔI _{DD}	—	10	15	μA	<u>C</u>				
	MCU Wake-up Consumption (+25 °C, 3 V)										
426	From STOP1 to first instruction, f _{BUS} = 4 MHz	Q _{WAKE}	0	0.05	0.1	µA-sec	<u>C</u>				
	External Battery Model										
427	Series impedance at end-of-life	Z _{EOL}	_	_	60	Ω	D				
428	Open circuit voltage at end-of-life	V _{EOL}	2.7	_	_	V	D				

Table 8. Power consumption...continued

1.8 V \leq V_{DD} \leq 3.6 V, T_A = -40 °C to 125 °C unless otherwise specified.

8.3 Control timing

Table 9. Control timing

1.8 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Internal Clock Frequency						
500	Initial startup frequency, multiplier of f _{MFO}	f _{OSC}		64x			D
501 502 503	Content deleted.						
504	Complete stabilization time (see Figure 4)			300	1000	µsec	<u>C</u>
505	MCU Bus Frequency	f _{BUS}		$0.5 f_{OSC}$	—		<u>D</u>
506	Content deleted.						
	Medium frequency clock (MFO)		·				
507	Content deleted.						
508	Full temperature range, –40 °C to +125 °C	f _{MFO}	104	125	135	kHz	<u>C</u>

FXTH87EK116 Product data sheet

Tire pressure monitor sensor

Table 9. Control timing...continued

1.8 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Low frequency clock (LFO)					,	
509	Content deleted.						
510	Full temperature range, –40 °C to +125 °C ^[1]	f _{LFO}	504	1050	1512	Hz	<u>C</u>
511	LFR clock (derived from LFRO)	f _{LFRO}	118	129	138	kHz	Α
	Power-On Reset Response						
512	Supply voltage risetime	t _{VDDR}			1	sec	<u>C</u>
513	Recovery time below V_{DD} = 0.5 V	t _{VDDOFF}	0		70	µsec	<u>C</u>
	MCU Wake-up Time (see <u>Figure 4</u>)						
514	From STOP1 to first instruction, $f_{BUS} = 4 \text{ MHz}$	t _{MCUWAKE}	—	50	70	µsec	<u>C</u>
515	Content deleted.						
516	From STOP4 to first instruction, f _{BUS} = 4 MHz	t _{MCUWAKE}		100	200	µsec	<u>C</u>
517	FLASH Data Retention Time	t _{DR}	10		_	year	D

[1] The customer application may attain the typical WCLK period of 1 second by calling the firmware routine TPMS_LFOCAL and writing the result into the WDIV register at address \$0039 bits 5:0. This process results in an adjustment to the PWU to reach the target typical value of 1 second.

Tire pressure monitor sensor

8.4 Voltage measurement characteristics

Table 10. Voltage measurement characteristics

 $1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, T_L \le T_A \le T_H$, unless otherwise specified. Transfer Function: $\text{V} = (0.01 \text{ V/LSB} * \text{V}_{CODE}) + 1.22 \text{ V}$

#	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
	Lower LVD detect threshold ^[1]						
600	V _{DD} falling	V _{LVDL}	1.84	—	1.96	V	<u>B</u>
601	V _{DD} rising	V _{LVDL}	1.92	—	2.03	V	<u>C</u>
602	Voltage drop detection time ^[2]	t _{LVDL}			10	µsec	<u>C</u>
	Higher LVD detect threshold ^[1]						
603	V _{DD} falling	V _{LVDH}	2.08	—	2.22	V	A
604	V _{DD} rising	V _{LVDH}	2.16	—	2.30	V	<u>C</u>
605	Voltage drop detection time ^[2]	t _{LVDH}		—	10	µsec	<u>C</u>
	Lower LVW detect threshold $(LVWV = 0)^{[1]}$						
606	V _{DD} falling	V _{LVWL}	2.08	—	2.22	V	A
607	V _{DD} rising	V _{LVWL}	2.16	_	2.30	V	<u>C</u>
608	Voltage drop detection time ^[2]	t _{LVWL}		—	10	µsec	<u>C</u>
	Higher LVW detect threshold (LVWV = 1) ^[1]						
609	V _{DD} falling	V _{LVWH}	2.32	—	2.52	V	A
610	V _{DD} rising	V _{LVWH}	2.36	—	2.56	V	<u>C</u>
611	Voltage drop detection time ^[2]	t _{LVWH}			10	µsec	<u>C</u>
612	RF LVD detect threshold, VDD falling ^[1]	V _{LVDRF}	1.60	1.88	1.97	V	<u>B</u>
613	Voltage drop detection time ^[2]	t _{LVDRF}	—	—	10	µsec	<u>C</u>
	Power-On Reset Voltage ^[1]						
614	Rising Voltage to Recover	V _{PORR}		—	2.2	V	<u>D</u>
615	Falling Voltage to Reset	V _{PORF}	0.8	—		V	<u>D</u>
616	Sensitivity Tolerance	$\Delta V_{MAX-MIN}$	9	10	12	mV/LSB	<u>C</u>
	V_{DD} Voltage, 0 °C ≤ T_A ≤ 50 °C						
617	Underflow			0	-		<u>D</u>
618	= 1.8	V _{MIN}	38	58	78		<u>C</u>
619	= 2.1		68	88	108		<u>C</u>
620	= 2.3		98	108	118	ISB	<u>C</u>
621	= 2.8	V _{CODE}	153	158	163		Α
622	= 3.0		173	178	183		<u>C</u>
623	= 3.3		203	208	213		<u>C</u>
624	= 3.6	V _{MAX}	228	238	248		<u>C</u>
625	Overflow			255			D

Tire pressure monitor sensor

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
626	Sensitivity Tolerance	ΔV _{MAX-MIN}	9	10	12	mV/LSB	<u>C</u>
	V_{DD} Voltage, 40 °C ≤ T_A ≤ 0 °C,						
	$50 \ ^{\circ}\text{C} \le \text{T}_{\text{A}} \le 125 \ ^{\circ}\text{C}$					-	
627	Underflow			0		-	<u>D</u>
628	= 1.8	V _{MIN}	38	58	78	-	<u>C</u>
629	= 2.1		68	88	108	-	<u><u>C</u></u>
630	= 2.3		98	108	118	LSB	<u>C</u>
631	= 2.8	V _{CODE}	148	158	168	-	<u>C</u>
632	= 3.0		168	178	188	-	<u>C</u>
633	= 3.3		198	208	218	-	<u>C</u>
634	= 3.6	V _{MAX}	228	238	248	_	<u>C</u>
635	Overflow			255			D
	External Voltage (PTA[1:0], monotonic response, conversion is ratiometric to V_{DD})						
636	Gx_{CODE} , where x = 0, 1 refers to PTA0 or PTA1	n		1023 (V _{IN} / V _{DD})	_	count	<u>D</u>
637	Voltage sensitivity	ΔV_{EXT}		V _{DD} /1023		V/count	D
638	ADC INL	INL	-1		+1	LSB	D
639	ADC DNL	DNL	-1		+1	LSB	D
	Voltage Measurement						
	(internal voltage or external pin)						
	Sensor measurement time						
640	Single sample, min delay	t _{VM}		0.40	0.64	ms	<u>C</u>
641	Content deleted.						
642	Content deleted.						
643	Peak current ^[3]	I _V		2.85	3.86	mA	<u>C</u>
	Power consumption						
	Raw measurement						
644	10-bit, single sample, min delay	Q _V		0.23	0.27	µA-sec	<u>C</u>
645	Content deleted.						
646	Content deleted.						
647	Compensation, 8-bit	Q _V		0.44	0.50	µA-sec	<u>C</u>
	Basic compensated reading						
648	8-bit, single sample, max delay	Q _V		0.67	0.75	µA-sec	<u>C</u>
	Full compensated reading						
649	8-bit, single sample, min delay	Q _V		0.67	0.75	µA-sec	<u>C</u>
FXTH87EK	. All information provided in this docum	ent is subject to legal d	isclaimers.	u l	©Ν	(P B.V. 2021. All ri	ghts reserved.

Table 10. Voltage measurement characteristics...continued

 $1.8 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, T_L \le T_A \le T_H$, unless otherwise specified. Transfer Function: $\text{V} = (0.01 \text{ V/LSB} * \text{V}_{CODE}) + 1.22 \text{ V}$

Product data sheet

Table 10. Voltage measurement characteristics...continued

1.8 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified. Transfer Function: V = (0.01 V/LSB * V_{CODE}) + 1.22 V

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes	
650	Content deleted.							
651	Content deleted.							
	Linear "bow-tie" limits between –40 °C and 0 °C and between 50 °C and 125 °C.							

Low voltage detection and warning thresholds defined for voltage change rates less than 20 mV/µs. Hysteresis thresholds may decrease above 85 °C. Response time to VDD of more than 100 mV below the minimum VDD falling threshold. [1]

[2] [3] Peak currents measured as the current over 10 MCU bus cycles immediately after the ADC wakes up the MCU using the external network shown in Figure 10 with R_{BATT} equal to zero-ohm resistance.

8.5 Temperature measurement characteristics

Table 11. Temperature measurement characteristics

2.3 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified. Transfer Function: T °C = (1 °C/LSB * T_{CODE}) – 55 °C

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
700	Sensitivity Accuracy, ±	$\Delta T_{MAX-MIN}$	0.93	1	1.08	°C/LSB	<u>C</u>
	Ambient Temperature, °C						
701	Underflow			0			<u>D</u>
702	= -50	T _{MIN}	0	5	10		<u>C</u>
703	= -40	T _{RATE-MIN}	10	15	20		<u>C</u>
704	= -20	T _{CODE}	32	35	38		A
705	= 0	T _{CODE}	52	55	58	LSB	<u>C</u>
706	= 25	T _{CODE}	77	80	83		<u>B</u>
707	= 85	T _{CODE}	136	140	144	-	A
708	= 125	T _{RATE-MAX}	175	180	185	-	<u>B</u>
709	= 150	T _{MAX} ^[1]	195	205	215		<u>C</u>
710	Overflow			255		-	D
711	Temperature measurement stability range ^[2]	T _{STAB}			2	count	<u>C</u>
	Thermal Shutdown Recovery (TRE = 1) ^[3]						
712	High Re-Arming Temperature (TRH = 1)	T _{REARMH}			125	°C	<u>D</u>
713	High Reset Temperature (TRH = 1)	T _{RESETH}	95		_	°C	<u>D</u>
714 715	Content deleted.						
	Temperature Measurement						
	Sensor measurement time						
716	Single sample, min delay	t _{TM}	—	0.55	0.71	ms	<u>C</u>
717 718	Content deleted.						
719	Peak current ^[4]	Ι _Τ		3.00	3.80	mA	<u>C</u>

Tire pressure monitor sensor

#	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
	Power consumption						
	Raw measurement						
720	10-bit, single sample, min delay	QT		0.21	0.25	µA-sec	<u>C</u>
721 722	Content deleted.						
723	Compensation, 8-bit	QT	_	0.24	0.56	µA-sec	<u>C</u>
	Basic compensated reading						
724	8-bit, single sample, max delay	QT		0.63	0.72	µA-sec	<u>C</u>
	Full compensated reading,						
725	8-bit, single sample, min delay	QT		0.68	0.77	µA-sec	<u>C</u>
726 727	Content deleted.						

Table 11. Temperature measurement characteristics...continued

2.3 V \leq V_{DD} \leq 3.6 V, T_I \leq T_A \leq T_H, unless otherwise specified. Transfer Function: T °C = (1 °C/LSB * T_{CODE}) – 55 °C

[1] Time at T_{MAX} must not exceed 12 events of 15 minutes duration during the product lifetime.

[2] Total range of variation over 30 consecutive measurements, using compensated output format. Single samples @ max. delay setting on each sample.
 [3] Temperature shutdown points trimmed at final test. Limits when TRH (\$180F bits 6:4) are a default state of 0x03.

[4] Peak currents measured as the current over 10 MCU bus cycles immediately after the ADC wakes up the MCU using the external network shown in Figure 10 with R_{BATT} equal to zero-ohm resistance.

8.6 Pressure measurement characteristics

8.6.1 Pressure measurement characteristic (90 kPa to 1500 kPa range)

Table 12. Pressure measurement characteristic (90 kPa to 1500 kPa range)

2.3 V \leq V_{DD} \leq 3.6 V, unless otherwise specified.

Transfer Function: P kPa = (2.80 kPa/LSB * P_{CODE}) + 87.20 kPa

#	Characteris	tic	Symbol	Min	Тур	Max	Units	Notes
900	Sensitivity –40 °C \leq T _A \leq 85		ΔP _{MAX-MIN}	2.70	2.80	2.90	kPa/LSB	<u>C</u>
901	Underflow			0				<u>D</u>
		90	P _{MIN}		1	7		
902	Proof pressure, kPa -40 °C ≤ T₄ ≤ 85 °C	327	P _{CODE}	80	86	92		<u>C</u>
903		564		164	170	176	-	A
904		801		249	255	261	LSB	<u>C</u>
905		1038		334	340	346	-	<u>C</u>
906	-	1275	-	418	424	430	-	<u>C</u>
	-	1512	P _{MAX}	503	509		-	
907		Overflow			511		-	D
908	Sensitivity T _A = 125 °C		ΔP _{MAX-MIN}	2.65	2.80	2.97	kPa/LSB	<u>C</u>
909		Underflow			0		LSB	D

Tire pressure monitor sensor

Table 12. Pressure measurement characteristic (90 kPa to 1500 kPa range)...continued $2.3 V \le V_{DD} \le 3.6 V$, unless otherwise specified.Transfer Function: $P kPa = (2.80 kPa/LSB * P_{CODE}) + 87.20 kPa$

#	Characteris	tic	Symbol	Min	Тур	Мах	Units	Notes
		90	P _{MIN}		1	14		
910		327		80	86	99		<u>C</u>
911		564		164	170	183	-	<u>C</u>
912	Proof pressure, kPa T _A = 125 °C	801	P _{CODE}	249	255	268		<u>C</u>
913		1038		334	340	353	_	<u>C</u>
914		1275	-	418	424	437	-	<u>C</u>
	-	1512	P _{MAX}	503	509			
915		Overflow			511		_	D
916	Pressure measurement st	ability range	P _{STAB}			6		<u>C</u>
	Interpolated limits betweer	n 85 °C and 125	°C					
917	0 g to 500 g		P _{ACC}	0	_	0	Pa/g	<u>C</u>
918	> 500 g		P _{ACC}	-6.5	-4.5	-2	Pa/g	<u>C</u>
919	0 to –500 g		P _{ACC}	0	_	0	Pa/g	<u>C</u>
920	> –500 g		P _{ACC}	2	4.5	6.5	Pa/g	<u>C</u>
	Pressure Measurement							
	Sensor measurement time							
921	Single sample, min delay		t _{PM}		0.68	0.85	ms	<u>C</u>
922	Single sample, max delay		t _{PM}	_	3.00	3.80	ms	<u>C</u>
923	Content deleted.							
924	Peak current ^[1]		lp		2.8	3.15	mA	<u>C</u>
	Power consumption							
	Raw measurement							
925	10-bit, single sample, min delay		Q _P	_	1.10	2.70	µA-sec	<u>C</u>
926	10-bit, single sample, max delay		Q _P		2.35	3.60	µA-sec	<u>C</u>
928	Compensation, 9-bit		Q _P	_	2.00	2.27	µA-sec	<u>C</u>
	Basic compensated reading							
927	9-bit, single sample, min delay		Q _P	—	3.10	3.60	µA-sec	<u>C</u>
929	9-bit, single sample, max delay		Q _P		4.35	5.00	µA-sec	<u>C</u>
	Full compensated reading							

Tire pressure monitor sensor

Table 12. Pressure measurement characteristic (90 kPa to 1500 kPa range)...continued 2.3 $V \le V_{DD} \le 3.6 V$, unless otherwise specified.

Transfer Function: P kPa = (2.80 kPa/LSB * P_{CODE}) + 87.20 kPa

#	Characteristi	ic	Symbol	Min	Тур	Мах	Units	Notes
930	9-bit, single sample, min delay		Q _P		3.50	4.40	µA-sec	<u>C</u>
931	9-bit, single sample, max delay		Q _P		4.75	5.80	µA-sec	<u>C</u>
932	Content deleted.							
	Linear "bow-tie" limits betw Interpolated limits between	0 °C and betwe °C.	en 70 °C a	nd 125 °C.		- -		

 Peak currents measured as the current over 10 MCU bus cycles immediately after the ADC wakes up the MCU using the external network shown in Figure 10 with R_{BATT} equal to zero-ohm resistance.

8.7 Optional acceleration sensor characteristics

8.7.1 Example Z-axis acceleration sensor calculations (similar for X-axis)

As an example, assume that the dynamic firmware routine has returned STEP = 6 indicating offset step 6, and A_{xCODE} = 256. Refer to <u>Table 13</u> near line 1064 to retrieve the step number 6 Proof Inertia values for A_{xCODE} = 509 and for A_{xCODE} = 1. Then apply Equation (1) to calculate the sensitivity for offset step 6:

$$\Delta A_{Z6} = \frac{(\text{Proof Inertia} @ A_{RATE-MAX} - \text{Proof Inertia} @ A_{RATE-MIN})}{(\text{LSB} @ A_{RATE-MAX} - \text{LSB} @ A_{RATE-MIN})}$$

$$= \frac{(51 - (-51))}{(509 - 1)}$$

$$= 0.2 \ g \ \text{per } A_{xCODE} \ \text{integer}$$
(1)

Once the sensitivity ΔA_{Z-6} has been calculated, the acceleration A_Z can be calculated with the transfer function shown in Equation (2):

$$A_{Z} = \Delta A_{Z6} \times (A_{xCODE} - \text{LSB} @ A_{\text{RATE-MIN}}) + A_{\text{RATE-MIN}}$$

= (0.20 × (256 - 1)) + (-51)
= 0 g (2)

Another example where STEP has been returned as 15 and A_{xCODE} has been returned as 256:

$$\Delta A_{Z15} = \frac{(\text{Proof Inertia} @ A_{RATE-MAX} - \text{Proof Inertia} @ A_{RATE-MIN})}{(\text{LSB} @ A_{RATE-MAX} - \text{LSB} @ A_{RATE-MIN})}$$

$$= \frac{(402 - 301)}{(509 - 1)}$$

$$= 0.2 \quad g \quad \text{per } A_{xCODE} \quad \text{integer}$$
(3)

Then:

© NXP B.V. 2021. All rights reserved.

$$A_{Z} = \Delta A_{Z15} \times (A_{xCODE} - \text{LSB} @ A_{\text{RATE-MIN}}) + A_{\text{RATE-MIN}}$$

= (0.20 × (256 - 1)) + (301)
= 352 g (4)

8.7.2 Acceleration measurement characteristics (X-axis, -80 g to +90 g range option)

Table 13. Acceleration measurement characteristics (X-axis -80 g to +90 g range option) $2.3 V \le V_{DD} \le 3.6 V$, unless otherwise specified. Offset Step 7 Transfer Function: A g's = ($0.056 \text{ g/LSB} * A_{CODE}$) - 14.2 g

#1	Characteristic	Symbol	Min	Тур	Max	Units	Notes
1090	Sensitivity Tolerance, $-20 \text{ °C} \le T_A \le 85 \text{ °C}$	ΔA _{MAX-MIN}	_	0.056	—	g/LSB	D
	Proof Inertia, g, Offset Step 0, $-20 \text{ °C} \leq T_A \leq 85 \text{ °C}$						
1091	Underflow			0			<u>D</u>
	= -84	A _{MIN}		1			
1092	= -77			128		ISB	<u>C</u>
1093	= -70	A _{CODE0}	88	255	422		<u>C</u>
1094	= -63			382			<u>C</u>
	= -56	A _{MAX}		509		-	
1095	Overflow			511		-	D
	Proof Inertia, g, Offset Step 1, –20 °C \leq T _A \leq 85 °C						
	= -74	A _{MIN}		1			
	= -67			128		LSB	
	= -60	A _{CODE1}	105	255	405		<u>D</u>
	= -53			382			
	= -46	A _{MAX}		509			
	Proof Inertia, g, Offset Step 2, –20 °C \leq T _A \leq 85 °C						
	= -64	A _{MIN}		1			
	= -57			128		ISB	
	= -50	A _{CODE2}	123	255	387		<u>D</u>
	= -43			382			
	= -36	A _{MAX}		509			
	Proof Inertia, g, Offset Step 3, –20 °C \leq T _A \leq 85 °C						
	= -54	A _{MIN}		1			
	= -47			128		ISB	
	= -40	A _{CODE3}	140	255	370		D
	= -33			382			
	= -26	A _{MAX}		509			

Tire pressure monitor sensor

-SB	es
_SB	
-SB	
-SB	
CD	
<u>_</u> <u>D</u>	
C D	
<u>_</u> <u>D</u>	
/LSB <u>C</u>	
<u>D</u>	
<u>C</u>	
<u>A</u>	
<u>C</u>	
<u>C</u>	
_	
	-SB D -SB C -SB C -SB A C C C D

Table 13. Acceleration measurement characteristics (X-axis –80 g to +90 g range option)...continued 2.3 $V \le V_{DD} \le 3.6 V$, unless otherwise specified. Offset Step 7 Transfer Function: A g's = (0.056 g/LSB * A_{CODE}) – 14.2 g

Tire pressure monitor sensor

2.0 V	$= v_{DD} = 0.0 v$, amess otherwise specifica. Onset step T is			(0.000	9/200 A	CODE / I	T.2 9
#1	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
1108	Sensitivity Tolerance, $T_A = -40$ °C and 125 °C	ΔA _{MAX-MIN}	0.04	0.056	0.12	g/LSB	D
	Proof Inertia, g, Offset Step 7, –40 °C and 125 °C						
1109	Underflow			0	3		D
	= -14	A _{MIN}		1	85		D
1110	= -7		59	128	197		D
1111	= 0	A _{CODE7}	201	255	309	LOD	D
1112	= 7		313	392	451	-	D
	= 14	A _{MAX}	425	509		-	D
1113	Overflow			511		_	D
	Proof Inertia, g, Offset Step 8, –20 °C ≤ T _A ≤ 85 °C						
	= -4	A _{MIN}		1			
	= 3			128			
	= 10	A _{CODE8}	193	255	317	LSB	D
	= 17			382		_	
	= 24	A _{MAX}		509		_	
	Proof Inertia, g, Offset Step 9, –20 °C ≤ T _A ≤ 85 °C						
	= 6	A _{MIN}		1			
	= 13			128			
	= 20	A _{CODE9}	175	255	335	LSB	D
	= 27			382		_	
	= 34	A _{MAX}		509	_		
	Proof Inertia, g, Offset Step 10, –20 °C ≤ T _A ≤ 85 °C						
	= 16	A _{MIN}		1			
	= 23			128			
	= 30	A _{CODE10}	158	255	352	LSB	D
	= 37			382		-	
	= 44	A _{MAX}		509			
	Proof Inertia, g, Offset Step 11, –20 °C ≤ T _A ≤ 85 °C						
	= 26	A _{MIN}		1			
	= 33			128			
	= 40	A _{CODE11}	140	255	370	LSB	D
	= 47			382		-	
	= 54	A _{MAX}	<u> </u>	509		-	
1				1	1	1	1

Table 13. Acceleration measurement characteristics (X-axis –80 g to +90 g range option)...continued 2.3 V \leq V_{DD} \leq 3.6 V. unless otherwise specified. Offset Step 7 Transfer Function: A a's = (0.056 a/LSB * A_{CODE}) – 14.2 g

Tire pressure monitor sensor

#1	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
	Proof Inertia, g, Offset Step 12, –20 °C \leq T _A \leq 85 °C						
	= 36	A _{MIN}		1			
	= 43			128			
	= 50	A _{CODE12}	123	255	387	LOD	D
	= 57			382			
	= 64	A _{MAX}		509		_	
	Proof Inertia, g, Offset Step 13, –20 °C ≤ T _A ≤ 85 °C						
	= 46	A _{MIN}		1			
	= 53			128			
	= 60	A _{CODE13}	105	255	405	LSB	D
	= 67			382		-	
	= 74	A _{MAX}		509			
	Proof Inertia, g, Offset Step 14, –20 °C \leq T _A \leq 85 °C						
-	= 56	A _{MIN}		1			
	= 63			128			
	= 70	A _{CODE14}	88	255	422	LOD	D
	= 77			382		-	
	= 84	A _{MAX}		509			
1114	Sensitivity Tolerance, –20 °C \leq T _A \leq 85 °C	$\Delta A_{MAX-MIN}$	_	0.056		g/LSB	<u>C</u>
	Proof Inertia, g, Offset Step 15, –20 °C \leq T _A \leq 85 °C						
1115	Underflow			0			D
	= 66	A _{MIN}				-	
1116	= 73			128			<u>C</u>
1117	= 80	A _{CODE15}	70	255	440	LSB	<u>C</u>
1118	= 87			382		_	<u>C</u>
	= 94	A _{MAX}		509		_	
1119	Overflow			511	1	-	D
	Linear "bow-tie" limits between –40 °C and –20 °C and b Interpolated limits between –40 °C to –20 °C and betwee	etween 85 °C en 85 °C to 12	C and 125 25 °C.	°C.			

Table 13. Acceleration measurement characteristics (X-axis –80 g to +90 g range option)...continued 2.3 $V \le V_{DD} \le 3.6 V$, unless otherwise specified. Offset Step 7 Transfer Function: A g's = (0.056 g/LSB * A_{CODE}) – 14.2 g

8.7.3 Acceleration measurement characteristics (Z-axis, –215 g to +305 g range option)

Table 14. Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option) $2.3 V \le V_{DD} \le 3.6 V$, unless otherwise specified.

Offset Step 6 Transfer Function: A g's = (0.144 g/LSB * A_{CODE}) – 36.5 g

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
1050	Sensitivity Tolerance, $-20 \text{ °C} \le T_A \le 85 \text{ °C}$	ΔA _{MAX-MIN}		0.144		g/LSB	<u>C</u>
	Proof Inertia, g, Offset Step 0, –20 °C ≤ T _A ≤ 85 °C						
1051	Underflow			0			<u>D</u>
	= -217	A _{MIN}		1			
1052	= -198			128		ISB	<u>C</u>
1053	= -180	A _{CODE0}	115	255	395	LOD	<u>C</u>
1054	= -162			382			<u>C</u>
	= -143	A _{MAX}		509			
1055	Overflow			511			<u>D</u>
	Proof Inertia, g Offset Step 1, –20 °C \leq T _A \leq 85 °C						
	= -187	A _{MIN}		1			
	= -168			128		ISB	
	= -150	A _{CODE1}	136	255	374	LOD	<u>D</u>
	= -132			382			
	= -113	A _{MAX}		509			
	Proof Inertia, g Offset Step 2, –20 °C \leq T _A \leq 85 °C						
	= -157	A _{MIN}		1			
	= -138			128		ISB	
	= -120	A _{CODE2}	156	255	354	LOD	<u>D</u>
	= -102			382			
	= -83	A _{MAX}		509			
	Proof Inertia, g Offset Step 3, –20 °C \leq T _A \leq 85 °C						
	= -127	A _{MIN}		1			
	= -108			128			
	= -90	A _{CODE3}	176	255	334	LOD	D
	= -72			382			
	= -53	A _{MAX}		509			

Table 14. Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)...continued 2.3 $V \le V_{DD} \le 3.6 V$, unless otherwise specified.

Offset Step 6	Transfer Function: J	4 g's =	(0.144 g/LSB	* A _{CODE}) -	– 36.5 g
---------------	----------------------	---------	---------------	-------------------------	----------

#	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
	Proof Inertia, g Offset Step 4, –20 °C \leq T _A \leq 85 °C						
	= -97	A _{MIN}		1			
	= -78			128		ISB	
	= -60	A _{CODE4}	197	255	313		<u>D</u>
	= -42			382			
	= -23	A _{MAX}		509		_	
	Proof Inertia, g Offset Step 5, –20 °C \leq T _A \leq 85 °C						
	= -67	A _{MIN}		1			
	= -48			128		ISB	
	= -30	A _{CODE5}	217	255	293	LSD	D
	= -12			382			
	= 7	A _{MAX}		509			
1062	Sensitivity Tolerance, $-20 \text{ °C} \le T_A \le 85 \text{ °C}$	$\Delta A_{MAX-MIN}$	0.12	0.144	0.17	g/LSB	<u>C</u>
	Proof Inertia, g, Offset Step 6, $-20 \text{ °C} \leq T_A \leq 85 \text{ °C}$						
1063	Underflow			0			<u>D</u>
	= -37	A _{MIN}		1	43		<u>C</u>
1064	= -18		98	128	158		<u>C</u>
1065	= 0	A _{CODE6}	238	255	272	LOD	<u>A</u>
1066	= 18		352	382	412		<u>C</u>
	= 37	A _{MAX}	467	509			<u>C</u>
1067	Overflow			511			<u>D</u>
1068	Sensitivity Tolerance, T_A = -40 °C and 125 °C	$\Delta A_{MAX-MIN}$	0.11	0.144	0.18	g/LSB	<u>D</u>
	Proof Inertia, g, Offset Step 6, –40 °C and 125 °C						
1069	Underflow			0			D
	= -37	A _{MIN}		1	52		<u>D</u>
1070	= -18		92	128	164		D
1071	= 0	A _{CODE6}	234	255	276	LOD	D
1072	= 18		346	382	418		<u>D</u>
	= 37	A _{MAX}	458	509		1	D
1073	Overflow			511			D

Table 14. Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)...continued 2.3 $V \le V_{DD} \le 3.6 V$, unless otherwise specified.

Offset Step 6	Transfer Function:	4 g's =	(0.144 g/LSB `	* A _{CODE}) -	- 36.5 g
---------------	--------------------	---------	-----------------	-------------------------	----------

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Proof Inertia, g Offset Step 7, –20 °C \leq T _A \leq 85 °C						
	= -7	A _{MIN}		1			
	= 12			128		ISB	
	= 30	A _{CODE7}	217	255	293		<u>D</u>
	= 48			382			
	= 67	A _{MAX}		509		-	
	Proof Inertia, g Offset Step 8, –20 °C \leq T _A \leq 85 °C						
	= 23	A _{MIN}		1			
	= 42			128		ICR	
	= 60	A _{CODE8}	197	255	313		<u>D</u>
	= 78			382			
	= 97	A _{MAX}		509			
	Proof Inertia, g Offset Step 9, –20 °C \leq T _A \leq 85 °C						
	= 53	A _{MIN}		1			
	= 72			128		LSB	
	= 90	A _{CODE9}	176	255	334		<u>D</u>
	= 108			382			
	= 127	A _{MAX}		509			
	Proof Inertia, g Offset Step 10, –20 °C \leq T _A \leq 85 °C						
	= 83	A _{MIN}		1			
	= 102			128		ICR	
	= 120	A _{CODE10}	156	255	354		<u>D</u>
	= 138			382			
	= 157	A _{MAX}		509			
	Proof Inertia, g Offset Step 11, –20 °C \leq T _A \leq 85 °C						
	= 113	A _{MIN}		1			
	= 132			128			
	= 150	A _{CODE11}	136	255	374		D
	= 168			382			
	= 187	A _{MAX}		509			

Table 14. Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)...continued $2.3 V \le V_{DD} \le 3.6 V$, unless otherwise specified.

Offset Step 6 Transfer Function: A g's =	(0.144 g/LSB * A _{CODE})) – 36.5 g
--	-------------------------------------	------------

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	Proof Inertia, g Offset Step 12, –20 °C \leq T _A \leq 85 °C						
	= 143	A _{MIN}		1			
	= 162			128			
	= 180	A _{CODE12}	115	255	395	LSD	D
	= 198			382			
	= 217	A _{MAX}		509			
	Proof Inertia, g Offset Step 13, –20 °C \leq T _A \leq 85 °C						
	= 173	A _{MIN}		1			
	= 192			128			
	= 210	A _{CODE13}	95	255	415	LSD	D
	= 228			382		-	
	= 247	A _{MAX}		509		_	
	Proof Inertia, g Offset Step 14, –20 °C \leq T _A \leq 85 °C						
	= 203	A _{MIN}		1		LSB	
	= 222			128			
	= 240	A _{CODE14}	74	255	436		D
	= 258			382		_	
	= 277	A _{MAX}		509			
1074	Sensitivity Tolerance, $-20 \text{ °C} \le T_A \le 85 \text{ °C}$	$\Delta A_{MAX-MIN}$		0.14		g/LSB	<u>C</u>
	Proof Inertia, g, Offset Step 15, –20 °C \leq T _A \leq 85 °C						
1075	Underflow			0			D
	= 233	A _{MIN}		1			
1076	= 252			128			<u>C</u>
1077	= 270	A _{CODE15}	54	255	456	LSD	<u>C</u>
1078	= 288			382		-	<u>C</u>
	= 307	A _{MAX}		509		_	
1079	Overflow			511			<u>D</u>
	Linear "bow-tie" limits between –40 °C and –20 °C and b Interpolated limits between –40 °C to –20 °C and between	etween 85 °C en 85 °C to 12	C and 125 25 °C.	°C.			

Tire pressure monitor sensor

8.7.4 Accelerometer measurements

Table 15. Accelerometer measurements

2.3 V \leq V_{DD} \leq 3.6 V, -20 °C \leq T_A \leq 85 °C, unless otherwise specified.

#	Characteristic ^[1]	Symbol	Min	Тур	Мах	Units	Notes
	Accelerometer Measurement (X- or Z-axis)						
	Sensor measurement time						
1150	Single sample, min delay	t _{AM}		0.68	0.85	ms	<u>C</u>
1151	Single sample, max delay	t _{AM}		3.00	3.80	ms	<u>C</u>
1152	Content deleted.						
1153	Peak current ^[2]	I _A	—	2.80	3.15	mA	<u>C</u>
	Power consumption						
	Raw measurement						
1154	10-bit, single sample, min delay	Q _A		1.10	2.70	µA-sec	<u>C</u>
1155	10-bit, single sample, max delay	Q _A		2.35	3.60	µA-sec	<u>C</u>
1157	Compensation, 9-bit	Q _A	—	2.00	2.27	µA-sec	<u>C</u>
	Basic compensated reading						
1156	9-bit, single sample, min delay	Q _A	_	3.10	3.60	µA-sec	<u>C</u>
1158	9-bit, single sample, max delay	Q _A		4.35	5.00	µA-sec	<u>C</u>
	Full compensated reading						
1159	9-bit, single sample, min delay	Q _A		3.50	4.40	µA-sec	<u>C</u>
1160	9-bit, single sample, max delay	Q _A		4.75	5.80	µA-sec	<u>C</u>
1161	Content deleted.						
1162	Acceleration measurement stability range ^[3]	A _{STAB}		_	4	LSB	<u>C</u>
1163	Acceleration cross-axis sensitivity	A _{CROSS}	-5	_	5	%	D
1164	Acceleration sensitivity variation	ΔΔΑ	-15	0	15	%	D

The content of <u>Table 15</u> are applicable to <u>Table 13</u> and <u>Table 14</u>. [1]

Peak currents measured as the current over 10 MCU bus cycles immediately after the ADC wakes up the MCU using the external network shown in [2] Figure 10 with R_{BATT} equal to zero-ohm resistance. Total range of variation over 30 consecutive measurements, using compensated output format. Single samples @ max. delay setting on each sample.

[3]

8.8 LFR sensitivity

LFR detection is tested to assure > 90 % message success rate. LFR no detection is tested to assure < 10 % message success rate. In carrier detect mode, the applied input pulse is at least 2x the LFCDTM selected. In all cases, the envelope of the input waveform must have an RC time constant less than 15.3 µs. LF sensitivity limits are measured while the device is in the STOP1 mode, which is characterized as a worstcase condition; sensitivity in the other modes are improved versus the STOP1 modes. LFR sensitivity detection/no detection uses firmware release 2A (Z-axis) or 24 (XZ-axis) or higher.

© NXP B.V. 2021. All rights reserved

Tire pressure monitor sensor

Table 16. LFR sensitivity

2.3 V \leq V_{DD} \leq 3.6 V, -20 °C \leq T_A \leq 85 °C, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	LFR Input Sensitivity in carrier mode, 125 kHz carrier,						
	LFCDTM = 256 µs UOS,						
	Very Low Sensitivity, SENS(1:0) = 00, CHK125 = 00						
1180	Detect level, LFA:B	S _{DET_VL}			60	mV p-p	D
1181	No detect level, LFA:B	S _{NODET_VL}	24		_	mV p-p	D
	Low Sensitivity, SENS(1:0) = 01, CHK125 = 00						
1182	Detect level, LFA:B	S _{DET_L}	—	_	14	mV p-p	D
1183	No detect level, LFA:B	S _{NODET_L}	2	_	_	mV p-p	D
	High Sensitivity, SENS[1:0] = 10, CHK125 = 10						
1184	Detect level, LFA:B	S _{DET_H}	_		3.0	mV p-p	B
1185	No detect level, LFA:B	S _{NODET_H}	0.5	_	_	mV p-p	B
	Sensitivity Shift in High Sensitivity,						
	SENS[1:0] = 10, CHK125 = 10						
1186	Detect level, LFA:B, (typical difference observed between CHK125 = 00 and 10	S _{DET_H}		-0.12	_	mV p-p	<u>C</u>
1187	No detect level, LFA:B, No detect level, LFA:B (typical difference observed between CHK125 = 00 and 10)	S _{NODET_H}		-0.12	_	mV p-p	<u>C</u>
	LFR Input Sensitivity in data mode						
	125 kHz carrier, LFCDTM = 64 μsec						
	Valid reception of 10 consecutive frames of 16-bit						
	Manchester bit preamble + 9T SYNC +16-bit ID + 4 bytes of data. Continuously ON						
	High Sensitivity, SENS[1:0] = 10, CHK125 = 10						
1188	Data detect level	S _{PER_H}	_		2.5	mV p-p	B
1189	Data no detect level	S _{NOPER_H}	0.25		_	mV p-p	B
	LFR Input Sensitivity in data mode						
	125 kHz carrier, LFCDTM = 64 μsec						
	Valid reception of 10 consecutive frames of 16-bit						
	Manchester bit preamble + 9T SYNC +16-bit ID + 4 bytes of data. Continuously ON						
	Low Sensitivity, SENS[1:0] = 01, CHK125 = 00						
1190	Data detect level	S _{PER_L}	_	_	14	mV p-p	<u>C</u>
1191	Data no detect level	S _{NOPER_L}	2	_	_	mV p-p	<u>C</u>

Tire pressure monitor sensor

8.9 LFR characteristics

Table 17. LFR characteristics

2.3 V \leq V_{DD} \leq 3.6 V, -20 °C \leq T_A \leq 85 °C, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	LF Input Signal Characteristics						
	Relative to High Sensitivity Data Mode Always Detect, $$S_{PER_{H}}$$						
1200	Dynamic Range, DEQEN = 0	V _{IN}	56	—	_	dB	<u>C</u>
	LFR Input Signal Characteristics						
	(Manchester Data Mode)						
1201	Modulation Depth (Data 1 to Data 0)/Data 1	M _R	70	—	100	%	<u>C</u>
1202	Data bit time	t _{DATA}	248	256	264	µsec	<u>C</u>
1203	Bit Duty Cycle	M _{DC}	45		55	%	<u>C</u>
	LFR Differential Input (LFA to LFB, Figure 6)						
1204	04 Differential Resistance		0.8		4	MΩ	<u>C</u>
1205	Differential Capacitance (C ₃)	C _{LFDF}	2	3.8	6	pF	<u>C</u>
	LFR Carrier Frequency Range						
	VALEN = 1, LFCDTM = 256 µsec						
1206	Always accepted carrier	f _{LFC}	121.25		128.75	kHz	<u>C</u>
1207	Always rejected carrier, rejected frequencies upper limit	f _{LFCH}			80	kHz	<u>C</u>
1208	Always rejected carrier, rejected frequencies lower limit	f _{LFCL}	210			kHz	<u>C</u>
	VALEN = 0, LFCDTM = 256 ms						
1209	High Cutoff Freq, 5 mV p-p input, SENS[1:0] = 00	f _{LFCO}	—	350	_	kHz	D
1210	LFR Detector Power Up Settling Time (2 LFO cycles)	t _{PU}	1.4	2.0	2.6	ms	D
	LFR Preamble Decoder Settling Time						
	Data Mode Only, LFCDTM plus t _{DEC}						
1211	LPSM = 0	t _{DEC}	—	_	200	µsec	D
1212	LPSM = 1	t _{DEC}	—	—	400	µsec	D

8.10 LFR power consumption

Table 18. LFR power consumption

2.3 $V \le V_{DD} \le 3.6 V$, -20 °C $\le T_A \le 85$ °C, unless otherwise specified. All parameters based on DEQEN = 0 setting.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	LFR Supply Current, Carrier Detect Mode						
	Monitor for carrier with VALEN = 0, LPSM = 1						
1300	Content deleted.						
1301	$T_A = -40$ °C to 125 °C	I _{LFR}		4.8	7.0	μA	<u>C</u>

FXTH87EK116

© NXP B.V. 2021. All rights reserved.

Tire pressure monitor sensor

#	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
	Frequency validation with						
	VALEN = 1, LPSM = 1 and CHK125 = 00						
1302	Content deleted.						
1303	$T_A = -40$ °C to 125 °C	I _{LFR}	—	6.0	7.7	μA	<u>C</u>
	Frequency validation with						
	VALEN = 1, LPSM = 1 and CHK125 = 10						
1304	Content deleted.						
1305	$T_A = -40$ °C to 125 °C	I _{LFR}	—	6.4	8.1	μA	A
	LFR Supply Current, Manchester Data Mode						
	Decoding of data stream after carrier detected						
1306	Content deleted.						
1307	T _A = –40 °C to 125 °C	I _{LFR}	—	11.3	14.3	μA	<u>C</u>

 Table 18. LFR power consumption...continued

2.3 V \leq V_{DD} \leq 3.6 V, -20 °C \leq T_A \leq 85 °C, unless otherwise specified. All parameters based on DEQEN = 0 setting.

8.11 RF output stage

Power output based on using Dynamic RF Power Correction firmware routine.

Output load of 50 Ω resistance as shown in <u>Figure 9</u> unless otherwise specified.

MCU in STOP1 mode during all RF tests.

RF output terminates when the total RF IDD causes VDD to fall below 1.8 V (VDD = VBATT – IBATT × RBATT). See Figure 10.

8.12 Power consumption RF transmissions

Table 19. RF output stage

1.8 $V \le V_{DD} \le$ 3.6 V, $T_L \le T_A \le T_H$, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Мах	Units	Notes
	Nominal Output Power with 50 Ω matching network ^[1]						
1400	315 MHz, T _A = 25 °C, V _{DD} = 3 V, PWR[4:0] = 01100	P _{RF}	4.4	5.0	7.2	dBm	A
1401	434 MHz, T _A = 25 °C, V _{DD} = 3 V, PWR[4:0] = 01110	P _{RF}	3.8	5.0	7.0	dBm	A
	Nominal Output Power with 50 Ω matching network at maximum power step, PWR[4:0] = 10100.						
1402 ^[2]	Temperature and voltage range defined by <u>Figure 7</u> and <u>Figure 8</u> .	P _{RF}	3			dBm	<u>C</u>
	Programmable Power Adjustment						
	PWR[4:0] = 00000 through 11111						
1403	Low-power mode (PWR[4:0] = 00000)	P _{LPM}		-10		dBm	<u>C</u>
1404	Range (nominal, (PWR[4:0] > 00000)	P _{RF}	-3.5	_	9.1	dBm	<u>C</u>
1405	Adjustment step (-1.5 dBm to +8 dBm)	P _{ADJ}		0.4	_	dBm	<u>C</u>
	Programmable Frequency Steps						
	Carrier and FSK Deviation						
1406	(AFREQ[12:0] and BFREQ[12:0])	f _{STEP}		3.174		kHz	<u>C</u>
1407	07 External Crystal Frequency ^[3]			26.000	_	MHz	<u>C</u>
1408	IO8 Fixed portion of RF start process			—	300	µsec	<u>C</u>
1409	Variable portion of RF start process	Bits		3		bit times	<u>D</u>
1410	Total RF transmit start time from write of SEND bit to start of RF @ 2,000 bit/s $t_{RF} = t_{S-RCTS} + (Bits * bit/s^{-1})$	t _{RF2}			1.8	ms	<u>C</u>
1411	Total RF transmit start time from write of SEND bit to start of RF @ 9,600 bit/s $t_{RF} = t_{S-RCTS} + (Bits * bit/s^{-1})$	t _{RF9.6}			613	µsec	<u>C</u>
1412	Total RF transmit start time from write of SEND bit to start of RF @ 20,000 bit/s $t_{RF} = t_{S-RCTS} + (Bits * bit/s^{-1})$	t _{RF20}	_	_	450	µsec	<u>C</u>
1413	OOK Modulation Depth	MOOK	50		_	dBc	<u>C</u>
	Manchester Encoding Data Rate						
1414	Bit Rate Dependent on accuracy of MFO. ^[4]	DR		_	±5	%	<u>C</u>
1415	Modulation Duty cycle (OOK and FSK)	DC	45	50	55	%	<u>C</u>
1416	XTAL Oscillator Margin (over 26 MHz) ^[5]	ML	600	—		Ω	D
	Harmonic 2 Level (315 MHz and 434 MHz bands, with matching reference network)						
1417	Content deleted.						
1418	$1.8 \le V_{DD} \le 3.6$, $T_L \le T_A \le T_H$, power step adjusted to reach the targeted power in each domain	H2	_	-40	-19	dBc	<u>C</u>
	Harmonic 4 Level and above (315 MHz and 434 MHz bands, with matching reference network)						
1419	V _{DD} = 3 V, T _A = 25 °C, PWR[4:0] = 01110	H4		-50	-50	dBc	<u>C</u>

© NXP B.V. 2021. All rights reserved.

Tire pressure monitor sensor

Table 19. RF output stage...continued

1.8 V \leq V_{DD} \leq 3.6 V, T_L \leq T_A \leq T_H, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
1420	$1.8 \le V_{DD} \le 3.6$, $T_L \le T_A \le T_H$, power step adjusted to reach the targeted power in each domain	H4	_	-50	-50	dBc	<u>C</u>
	Harmonic 3 Level (315 MHz and 434 MHz bands, with matching reference network)						
1421	Content deleted.						
1422	$1.8 \le V_{DD} \le 3.6$, $T_L \le T_A \le T_H$, power step adjusted to reach the targeted power in each domain	H3		-40	-31	dBc	<u>C</u>
	Noise for BOOST = 0						
	Phase Noise (315 MHz)						
1423	f _{RF} ± 10 kHz	N _{PH}	—	-86	-78	dBc/Hz	<u>C</u>
1424	f _{RF} ± 100 kHz	N _{PH}	—	-94	-88	dBc/Hz	<u>C</u>
1425	f _{RF} ± 1 MHz	N _{PH}	_	-84	-82	dBc/Hz	<u>C</u>
	Phase Noise (434 MHz)						
1426	f _{RF} ± 10 kHz	N _{PH}	—	-90	-85	dBc/Hz	<u>C</u>
1427	f _{RF} ± 100 kHz	N _{PH}	_	-89	-83	dBc/Hz	<u>C</u>
1428	f _{RF} ± 1 MHz	N _{PH}	_	-82	-80	dBc/Hz	<u>C</u>
	Spurious Noise (315 MHz MHz and 434 MHz bands)						
1429	f _{RF} ± f _{REF}	N _{SPUR}	_	-45	-40	dBc	<u>C</u>
	Occupied Bandwidth (Korea, MIC 2007-63)						
1430	For FSK up to \pm 35 kHz and 19.2 kbit/s and For OOK up to 9600 bit/sec Analyzed setup: RBW = VBW up to 10 kHz, Span up to 1.25 MHz, and MaxHold PA slope @ 3 µs	OBW _K			200	kHz	<u>C</u>
	Noise for BOOST = 1						
	Phase Noise (315 MHz)						
1431	f _{RF} ± 10 kHz	N _{PH}	—	-75	-67	dBc/Hz	<u>C</u>
1432	f _{RF} ± 100 kHz	N _{PH}	—	-80	-76	dBc/Hz	<u>C</u>
1433	f _{RF} ± 1 MHz	N _{PH}	—	-95	-93	dBc/Hz	<u>C</u>
	Spurious Noise (315 MHz bands)						
1434	f _{RF} ± f _{REF}	N _{SPUR}	—	-45	-40	dBc	<u>C</u>
	Occupied Bandwidth (Japan, ARIB STD-T93)						
1435	For FSK up to ±45 kHz and 38.4k bit/s PA slope @ 3 µs	OBWJ	_		400	kHz	<u>C</u>
1436	For OOK up to 38.4k bit/s Analyzed setup: RBW = VBW up to 30 kHz, Span up to 3.5 MHz, and MaxHold PA slope @ 3 µs	OBWJ	_		700	kHz	<u>C</u>

Table 19. RF output stage...continued

1.8 $V \le V_{DD} \le$ 3.6 V, $T_L \le T_A \le T_H$, unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
1437	RF Oscillator Frequency Accuracy, XCO ^[1] excluding external crystal and component variations	f _{xco}	_	_	±4	ppm	<u>C</u>

[1] Actual final test value degraded by losses in the tester. Correlation study done as characterization to infer actual value. Does not include variances due to application-specific external crystal choice. NDK NX3225SA used during characterizations.

[2] NXP D-FMEA class 306.

[3] Suggested crystal is NDK NX3225SA, 26.000 MHz.

[4] Accuracy of the RF data rate when using the data buffer is dependent on the overall oscillator function (for example, including external crystal and internal circuit tolerances).

[5] Crystal oscillator margin is the value of the total series resistance including the XTAL ESR, that can be applied before the XCO does not start up. This definition does not define any specific start up time.

Table 20. Power consumption RF transmissions

1.8 V \leq V_{DD} \leq 3.6 V, T_A = 25 °C unless otherwise specified.

#	Characteristic	Symbol	Min	Тур	Max	Units	Notes
	RF Supply Transmission Current						
	V _{DD} = 3.0 V, PWR[4:0] set for nominal 5 dBm						
1500	1500 315 MHZ Power delta for BOOST = 1				0.55	mA	<u>B</u>
	315 MHZ Carrier Frequency, BOOST = 0						
1501	Data 1, FSK, or OOK	I _{DD}		5.7	6.3	mA	A
	434 MHZ Carrier Frequency, BOOST = 0						
1502	Data 1, FSK, or OOK	I _{DD}		6.5	7.1	mA	A
1503	Content deleted.						
1504	Interframe period, IFPD = 0, $1.8 \le V_{DD} \le 3.6$, $T_L \le T_A \le T_H$	I _{DD}		525	715	μA	<u>C</u>
1505	Interframe period, IFPD = 1, DRLPEN = 1, 1.8 \leq V _{DD} \leq 3.6, T _L \leq T _A \leq T _H	I _{DD}		17.5	38.5	μA	<u>C</u>
1506	Content deleted.						
1507	Interframe period, IFPD = 1, DRLPEN = 0, 1.8 \leq V _{DD} \leq 3.6, T _L \leq T _A \leq T _H	I _{DD}	_	72	125	μΑ	<u>C</u>

Using the TPMS_RF_DYNAMIC_POWER firmware routine (refer to the <u>FXTH87xx11</u> and <u>FXTH87xx12</u> embedded firmware user guide), allows adjusting the power steps in order to compensate for variations of output power versus temperature and voltage. This routine is associated with a part-to-part trimming that initially adjusts the power step to compensate for process variations.

The trim and look-up tables provide typical guaranteed-by-characterization values for power consumption as presented below (average values among 100 parts plus improvements predicted from the design).

FXTH87EK116 Product data sheet © NXP B.V. 2021. All rights reserved

Tire pressure monitor sensor

FXTH87EK116 Product data sheet © NXP B.V. 2021. All rights reserved.

Tire pressure monitor sensor

8.13 Mechanical characteristics

8.13.1 Limiting values (mechanical)

Limiting value ratings are the extreme limits to which the device can be exposed without permanently damaging it. The device contains circuitry to protect the inputs against damage from high static voltages; however, do not apply voltages higher than those shown in the table below. Keep V_{IN} and V_{OUT} within the range $V_{SS} \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{DD}$.

Table 21. Maximum ratings

#	Rating	Symbol	Value	Unit	Notes
	Maximum Pressure (absolute)		up to 1500 kPa		
1800	Continuous	p _{max}	2000	kPa	<u>C</u>
1801	Pulsed, 5 seconds, 25 °C	p _{max}	2500	kPa	<u>C</u>
	Centrifugal Force Effects (Z-axis)				
1802	Sustained acceleration (Z-axis)	9cent	2600	g	<u>C</u>
1803	Powered Shock (peak, 0.1 ms, half-sine, 6-axis)	g shock	6000	g	<u>C</u>
1804	Drop Test (onto concrete, unpowered)	h _{DROP}	1.2	m	<u>C</u>
	Pressure Sensor Resonance				
1805	Resonant frequency	f _{P0}	5.5	MHz	<u>D</u>
1806	Damping Ratio	Q _P	1		<u>D</u>
	Optional X-axis Accelerometer Sensor Resonance				
1807	Resonant frequency (no-peak, over-damped)	f _{X0}	12.5	kHz	<u>D</u>
1808	Damping Ratio	Q _X	0.1		D
1809	Maximum acceleration before limit stops are reached	9 мах	180	g	<u>D</u>
	Z-axis Accelerometer Sensor Resonance				
1810	Resonant frequency (no-peak, over-damped)	f _{Z0}	10.5	kHz	D
1811	Damping Ratio	Qz	5		D
1812	Maximum acceleration before limit stops are reached	9 мах	800	g	<u>D</u>
1813	Package Weight	w	0.30	gm	<u>C</u>

Tire pressure monitor sensor

8.13.2 Media compatibility

Media compatibility is based on the media and test methods described in NXP specification NXPOMS-999116894-4501^[2]. Consult your sales representative for more details and specific requirements.

Package outline 9

Consult the most recently issued package drawing^[1] before initiating or completing a design. .

Figure 11. Package outline HQFN24 (SOT1575-1)

© NXP B.V. 2021. All rights reserved.

NOTES:				
1. DIMENSIONS ARE IN MILLIMETERS.				
2. INTERPRET DIMENSIONS AND TOLERA	NCES PER AS	SME Y14.5N	<i>I</i> —1994.	
$\overline{3}$ coplanarity applies to leads, a	ND DIE ATTAC	CH PAD.		
4. MIN METAL GAP SHOULD BE 0.2MM. \wedge				
5. THIS DIMENSION APPLIES ONLY FOR T	FERMINALS.			
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MEC	HANICAL OU	TLINE	PRINT VERSION NOT	TO SCALE
TITLE: QFN,	ŀ	DOCUMEN	T NO: 98ASA00432D	REV: H
THERMALLY ENHANCED, 7 X 7 X 2.2. 1.0 PITCH 24 TF	RMINAI	STANDARE): NON-JEDEC	
		SOT1575-	-1 08	JAN 2016
Figure 13. Package outline notes HQFN24 (SOT1	575-1)			

10 Mounting recommendations

The package should be mounted with the pressure port pointing away from the axis of tire rotation so that centrifugal force propels any contaminants out of the pressure port. In cases where the application must orient the pressure port pointing inward, care must be taken to assure that no contaminants accumulate inside the pressure port.

A plugged port exhibits no change in pressure and can be cross-checked in the user's software using the method described in the *FXTH87E Hardware Reference Manual*^[3].

Refer to application note AN1902^[4] for proper printed circuit board attributes and recommendations.

11 References

The features and operations of the FXTH87EK116 are described in various reference manuals, user guides, and application notes. To find the most-current versions of these documents:

- 1. Go to the FXTH87E Tire Pressure Sensor Monitors (TPMS) Family page on NXP.com.
- 2. Select the documentation tab and review the related documentation.

Contact NXP sales representatives for performance attributes such as electrical, mechanical, and time-based characteristics.

- [1] SOT1575-1 https://www.nxp.com/docs/en/package-information/SOT1575-1.pdf
- [2] NXPOMS-999116894-4501 Media Test for TPMS MCM Automotive Pressure Sensors
- [3] FXTH87E, Family of Tire Pressure Monitor Sensors Reference Manual <u>FXTH87E Tire Pressure Monitor Sensors Reference manual</u>
- [4] AN1902 Assembly guidelines for QFN (quad flat no-lead) and SON (small outline no-lead) packages https://www.nxp.com/docs/en/application-note/AN1902.pdf
- [5] FXTH87E Tire Pressure Monitor Sensor (TPMS) Family webpage <u>FXTH87E Tire Pressure Monitor Sensor (TPMS) Family</u>

12 Revision history

Revision history						
Document ID	Release date	Data sheet status	Change notice	Supersedes		
FXTH87EK116 v.2.1	20210625	Product data sheet	_	FXTH87EK116 v.2		
Modifications	• <u>Section 3.1, Tabl</u> "FXTH87EK116T	• <u>Section 3.1</u> , <u>Table 2</u> , corrected typo in part number from "FXTH87E116T1" to "FXTH87EK116T1".				
FXTH87EK116 v.2	20210420	Product data sheet	_	FXTH87EK116 v.1.5		
FXTH87EK116 v.1.5	20201030	Objective data sheet				

13 Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

[2] [3] The term 'short data sheet' is explained in section "Definitions".

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft - A draft status on a document indicates that the content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included in a draft version of a document and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Suitability for use in automotive applications - This NXP product has been qualified for use in automotive applications. If this product is used by customer in the development of, or for incorporation into, products or services (a) used in safety critical applications or (b) in which failure could lead to death, personal injury, or severe physical or environmental damage (such products and services hereinafter referred to as "Critical Applications"),

FXTH87EK116

Tire pressure monitor sensor

then customer makes the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, safety, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. As such, customer assumes all risk related to use of any products in Critical Applications and NXP and its suppliers shall not be liable for any such use by customer. Accordingly, customer will indemnify and hold NXP harmless from any claims, liabilities, damages and associated costs and expenses (including attorneys' fees) that NXP may incur related to customer's incorporation of any product in a Critical Application.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer is responsible for the design and operation of its applications and products throughout

their lifecycles to reduce the effect of these vulnerabilities on customer's applications and products. Customer's responsibility also extends to other open and/or proprietary technologies supported by NXP products for use in customer's applications. NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products, regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of NXP products.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NXP — wordmark and logo are trademarks of NXP B.V.

Tire pressure monitor sensor

Tables

Tab. 1.	Ordering information2
Tab. 2.	Ordering information2
Tab. 3.	Pin description5
Tab. 4.	Maximum ratings5
Tab. 5.	Operating range6
Tab. 6.	Electrical and mechanical specification
	note definition table7
Tab. 7.	Electrical characteristics7
Tab. 8.	Power consumption8
Tab. 9.	Control timing9
Tab. 10.	Voltage measurement characteristics11
Tab. 11.	Temperature measurement characteristics13

Tab. 12. Pressure measurement characteristic (90 kPa to 1500 kPa range)14 Tab. 13. Acceleration measurement characteristics (X-axis -80 g to +90 g range option)17 Tab. 14. Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option) 21 Accelerometer measurements25 Tab. 15. Tab. 16. LFR sensitivity26 Tab. 17. Tab. 18. LFR power consumption27 Tab. 19. Tab. 20. Tab. 21.

Figures

Fig. 1.	FXTH87EK116 block diagram	3
Fig. 2.	FXTH87EK116 package pinout	4
Fig. 3.	FXTH87EK116 QFN optional Z-axis	
	accelerometer orientation	4
Fig. 4.	MCU startup delays 10	C
Fig. 5.	Control timing test load for digital pins 10	C
Fig. 6.	LFR detector input equivalent circuit28	8
Fig. 7.	Dynamic power adjustment - 315 MHz 32	2
Fig. 8.	Dynamic power adjustment - 434 MHz 32	2

Fig. 9.	RF output power measurement	
U U	configuration	
Fig. 10.	Battery performance test configuration	
Fig. 11.	Package outline HQFN24 (SOT1575-1)	35
Fig. 12.	Package outline detail HQFN24	
	(SOT1575-1)	36
Fig. 13.	Package outline notes HQFN24	
	(SOT1575-1)	37

Tire pressure monitor sensor

Contents

2 Features and benefits 1 3 Ordering information 2 3.1 Ordering options 2 4 Block diagram 3 5 Pinning information 4 5.1 Pinning 4 5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 14 8.6.1 Pressure measurement characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.3 Acceleration measurement characteristics 17 8.7.4 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 <th>1</th> <th>General description</th> <th> 1</th>	1	General description	1
3 Ordering information 2 3.1 Ordering options 2 4 Block diagram 3 5 Pinning information 4 5.1 Pinning 4 5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 14 8.6 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor calculations (similar for X-axis) 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 16 8.7.4 Acceleration measurement characteristics 12 8.7.4 Accelerometer	2	Features and benefits	1
3.1 Ordering options 2 4 Block diagram 3 5 Pinning information 4 5.1 Pinning 4 5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 16 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 16 8.7.4 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement c	3	Ordering information	2
4 Block diagram 3 5 Pinning information 4 5.1 Pinning 4 5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor calculations (similar for X-axis) 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 16 8.7.4 Acceleration measurement characteristics 16 8.7.4 Acceleration measurement characteristics 17 8.7.4 Acceleration measurement searacteristics 27	3.1	Ordering options	2
5 Pinning information 4 5.1 Pinning 4 5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 16 8.7.4 Acceleration measurement characteristics 17 8.7.3 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.11 Reforences 33	4	Block diagram	3
5.1 Pinning 4 5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurement characteristics 16 8.7.5 g to +30 g range option) 17 8.7.4 Accelerometer measurements 25 8.8	5	Pinning information	4
5.2 Pin description 5 6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 16 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 <t< th=""><td>5.1</td><td>Pinning</td><td>4</td></t<>	5.1	Pinning	4
6 Limiting values 5 7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 16 8.7.3 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurement characteristics 17 8.7.5 B t +90 g range option) 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity <td>5.2</td> <td>Pin description</td> <td>5</td>	5.2	Pin description	5
7 Recommended operating conditions 6 8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 16 8.7.4 Acceleration measurement characteristics 17 8.7.3 Accelerometer measurement characteristics 17 8.7.4 Accelerometer measurement succelerations 17 8.7.5 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption	6	Limiting values	5
8 Characteristics 7 8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Acceleration measurement characteristics 17 8.7.5 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurements 17 8.7.5 Accelerometer measurements 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption RF transmission	7	Recommended operating conditions	6
8.1 Electrical characteristics 7 8.2 Power consumption (MCU) 8 8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 RF output stage 28 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics	8	Characteristics	7
 8.2 Power consumption (MCU)	8.1	Electrical characteristics	7
8.3 Control timing 9 8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurement characteristics 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 RF output stage 28 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics 33 8.13.2 Media compatibi	8.2	Power consumption (MCU)	8
8.4 Voltage measurement characteristics 11 8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristic 14 8.6.1 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurement characteristics 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 RF output stage 28 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics 33 8.13	8.3	Control timing	9
8.5 Temperature measurement characteristics 13 8.6 Pressure measurement characteristics 14 8.6.1 Pressure measurement characteristics 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor 16 8.7.2 Acceleration measurement characteristics 16 8.7.2 Acceleration measurement characteristics 17 8.7.3 Acceleration measurement characteristics 17 8.7.4 Accelerometer measurement characteristics 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 Reforencial characteristics 33 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics 33 <	8.4	Voltage measurement characteristics	.11
8.6 Pressure measurement characteristics	8.5	Temperature measurement characteristics	.13
8.6.1 Pressure measurement characteristic (90 kPa to 1500 kPa range) 14 8.7 Optional acceleration sensor characteristics 16 8.7.1 Example Z-axis acceleration sensor calculations (similar for X-axis) 16 8.7.2 Acceleration measurement characteristics (X-axis, -80 g to +90 g range option) 17 8.7.3 Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option) 17 8.7.4 Acceleration measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 RF output stage 28 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics 33 8.13.1 Limiting values (mechanical) 33 8.13.2 Media compatibility 34 9 Package outline 35 10 Mounting recommendations 38 11 References 38 12 Revision history 39 13 Legal information 40	8.6	Pressure measurement characteristics	.14
(90 kPa to 1500 kPa range)148.7Optional acceleration sensor characteristics168.7.1Example Z-axis acceleration sensor calculations (similar for X-axis)168.7.2Acceleration measurement characteristics (X-axis, -80 g to +90 g range option)178.7.3Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)178.7.4Accelerometer measurement characteristics (Z-axis, -215 g to +305 g range option)218.7.4Accelerometer measurements258.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.6.1	Pressure measurement characteristic	
8.7 Optional acceleration sensor characteristics16 8.7.1 Example Z-axis acceleration sensor calculations (similar for X-axis)		(90 kPa to 1500 kPa range)	14
8.7.1 Example Z-axis acceleration sensor calculations (similar for X-axis) 16 8.7.2 Acceleration measurement characteristics (X-axis, -80 g to +90 g range option) 17 8.7.3 Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option) 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 RF output stage 28 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics 33 8.13.1 Limiting values (mechanical) 33 8.13.2 Media compatibility 34 9 Package outline 35 10 Mounting recommendations 38 11 References 38 12 Revision history 39 13 Legal information 40	8.7	Optional acceleration sensor characteristics	.16
calculations (similar for X-axis)168.7.2Acceleration measurement characteristics (X-axis, -80 g to +90 g range option)178.7.3Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)178.7.4Accelerometer measurement characteristics (Z-axis, -215 g to +305 g range option)218.7.4Accelerometer measurements258.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.7.1	Example Z-axis acceleration sensor	
8.7.2 Acceleration measurement characteristics (X-axis, -80 g to +90 g range option) 17 8.7.3 Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option) 17 8.7.4 Accelerometer measurements 25 8.8 LFR sensitivity 25 8.9 LFR characteristics 27 8.10 LFR power consumption 27 8.11 RF output stage 28 8.12 Power consumption RF transmissions 29 8.13 Mechanical characteristics 33 8.13.1 Limiting values (mechanical) 33 8.13.2 Media compatibility 34 9 Package outline 35 10 Mounting recommendations 38 11 References 38 12 Revision history 39 13 Legal information 40		calculations (similar for X-axis)	. 16
(X-axis, -80 g to +90 g range option)178.7.3Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)218.7.4Accelerometer measurements258.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.7.2	Acceleration measurement characteristics	
8.7.3Acceleration measurement characteristics (Z-axis, -215 g to +305 g range option)218.7.4Accelerometer measurements258.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40		(X-axis, –80 g to +90 g range option)	. 17
(Z-axis, -215 g to +305 g range option)218.7.4Accelerometer measurements258.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.7.3	Acceleration measurement characteristics	
8.7.4Accelerometer measurements258.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40		(Z-axis, –215 g to +305 g range option)	.21
8.8LFR sensitivity258.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.7.4	Accelerometer measurements	.25
8.9LFR characteristics278.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.8	LFR sensitivity	25
8.10LFR power consumption278.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.9	LFR characteristics	.27
8.11RF output stage288.12Power consumption RF transmissions298.13Mechanical characteristics338.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.10	LFR power consumption	.27
8.12Power consumption RF transmissions298.13Mechanical characteristics	8.11	RF output stage	.28
8.13Mechanical characteristics	8.12	Power consumption RF transmissions	.29
8.13.1Limiting values (mechanical)338.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.13	Mechanical characteristics	.33
8.13.2Media compatibility349Package outline3510Mounting recommendations3811References3812Revision history3913Legal information40	8.13.1	Limiting values (mechanical)	33
9Package outline	8.13.2	Media compatibility	34
10Mounting recommendations3811References3812Revision history3913Legal information40	9	Package outline	.35
11References3812Revision history3913Legal information40	10	Mounting recommendations	38
12Revision history	11	References	. 38
13 Legal information40	12	Revision history	39
	13	Legal information	.40

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2021.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 June 2021 Document identifier: FXTH87EK116