

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceed the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-35835
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)

• Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

Retriggerable Monostable Multivibrators

These dc triggered multivibrators feature pulse width control by three methods. The basic pulse width is programmed by selection of external resistance and capacitance values. The LS122 has an internal timing resistor that allows the circuits to be used with only an external capacitor. Once triggered, the basic pulse width may be extended by retriggering the gated low-level-active (A) or high-level-active (B) inputs, or be reduced by use of the overriding clear.

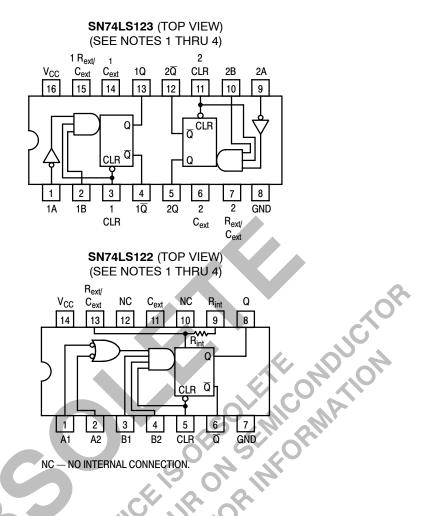
- Overriding Clear Terminates Output Pulse
- Compensated for V_{CC} and Temperature Variations
- DC Triggered from Active-High or Active-Low Gated Logic Inputs
- Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle
- Internal Timing Resistors on LS122

ON Semiconductor™

http://onsemi.com

LOW POWER SCHOTTKY

ymbol	Parameter	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
Τ _Α	Operating Ambient Temperature Range	0	25	70	ΰů
I _{OH}	Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA
R _{ext}	External Timing Resistance	5.0		260	kΩ
C _{ext}	External Capacitance		No Res	striction	
R _{ext} /C _{ext}	Wiring Capacitance at R _{ext} /C _{ext} Terminal	X		50	pF
	PLEA	RE	Ph		


PLASTIC **N SUFFIX** CASE 646 SOIC D SUFFIX CASE 751A PLASTIC **N SUFFIX CASE 648** SOIC **D SUFFIX** CASE 751B SOEIAJ **M SUFFIX CASE 966**

ORDERING INFORMATION

Device	Package	Shipping		
SN74LS122N	14 Pin DIP	2000 Units/Box		
SN74LS122D	SOIC-14	55 Units/Rail		
SN74LS122DR2	SOIC-14	2500/Tape & Reel		
SN74LS123N	16 Pin DIP	2000 Units/Box		
SN74LS123D	SOIC-16	38 Units/Rail		
SN74LS123DR2	SOIC-16	2500/Tape & Reel		
SN74LS123M	SOEIAJ-16	See Note 1		
SN74LS123MEL	SOEIAJ-16	See Note 1		

1. For ordering information on the EIAJ version of the SOIC package, please contact your local ON Semiconductor representative.

GU

NOTES:

- ected betv. .e LS122, conn. .y connect an external var. 1. An external timing capacitor may be connected between C_{ext} and R_{ext}/C_{ext} (positive).
- 2. To use the internal timing resistor of the LS122, connect R_{int} to V_{CC} . 3. For improved pulse width accuracy connect an external resistor between R_{ext}/C_{ext} and V_{CC} with R_{int} open-circuited.
- 4. To obtain variable pulse widths, connect an external variable resistance between Rint/Cext and V_{CC}.

LS122 FUNCTIONAL TABLE

	INPUTS							
CLEAR	A1	A2	B1	B2	Q	Q		
L	Х	Х	Х	Х	L	Н		
Х	н	Н	Х	Х	L	Н		
Х	Х	Х	L	Х	L	Н		
Х	Х	Х	Х	L	L	Н		
Н	L	Х	ſ	н	л	ъ		
Н	L	Х	н	↑	л	ч		
Н	Х	L	ſ	Н	л	ъ		
Н	Х	L	Н	↑	л	υ		
Н	Н	Ļ	Н	Н	л	υ		
Н	¥	Ļ	Н	Н	л	ъ		
Н	Ŷ	Н	Н	Н	л	ъ		
↑	L	Х	Н	Н	л	ъ		
1	Х	L	Н	Н	л	U		

TYPICAL APPLICATION DATA

The output pulse t_W is a function of the external components, C_{ext} and R_{ext} or C_{ext} and R_{int} on the LS122. For values of $C_{ext} \ge 1000$ pF, the output pulse at $V_{CC} = 5.0$ V and $V_{RC} = 5.0$ V (see Figures 1, 2, and 3) is given by

 $t_W = K R_{ext} C_{ext}$ where K is nominally 0.45

If C_{ext} is on pF and R_{ext} is in k Ω then t_W is in nanoseconds.

The C_{ext} terminal of the LS122 and LS123 is an internal connection to ground, however for the best system performance C_{ext} should be hard-wired to ground.

Care should be taken to keep R_{ext} and C_{ext} as close to the monostable as possible with a minimum amount of inductance between the R_{ext}/C_{ext} junction and the R_{ext}/C_{ext} pin. Good groundplane and adequate bypassing should be designed into the system for optimum performance to ensure that no false triggering occurs.

It should be noted that the C_{ext} pin is internally connected to ground on the LS122 and LS123, but not on the LS221. Therefore, if C_{ext} is hard-wired externally to ground, substitution of a LS221 onto a LS123 socket will cause the LS221 to become non-functional.

The switching diode is not needed for electrolytic capacitance application and should not be used on the LS122 and LS123.

To find the value of K for $C_{ext} \ge 1000$ pF, refer to Figure 4. Variations on V_{CC} or V_{RC} can cause the value of K to change, as can the temperature of the LS123, LS122.

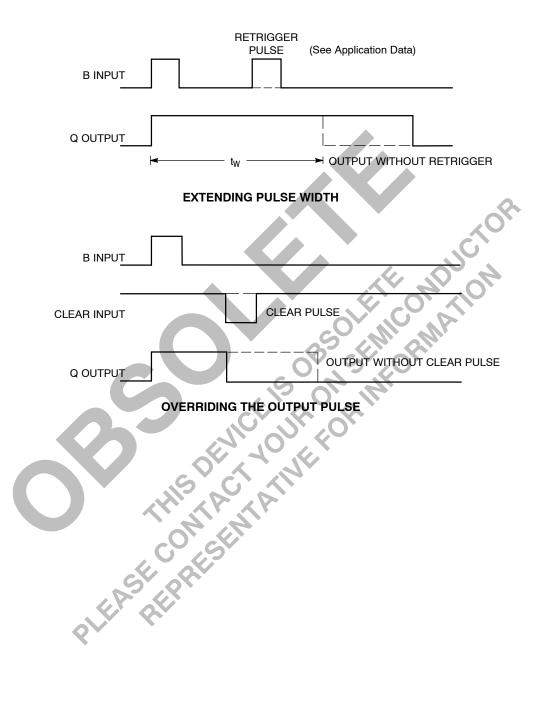
LS123 FUNCTIONAL TABLE

IN	OUT	OUTPUTS		
CLEAR	Α	В	Q	Q
L	Х	Х	L	Н
Х	н	Х	L	н
Х	Х	L	L	н
Н	L	1	л	പ
н	¥	Н	л	പ
↑	L	Н	л	പ

Figures 5 and 6 show the behavior of the circuit shown in Figures 1 and 2 if separate power supplies are used for V_{CC} and V_{RC} . If V_{CC} is tied to V_{RC} , Figure 7 shows how K will vary with V_{CC} and temperature. Remember, the changes in R_{ext} and C_{ext} with temperature are not calculated and included in the graph.

As long as $C_{ext} \ge 1000$ pF and 5K $\le R_{ext} \le 260$ K, the change in K with respect to R_{ext} is negligible.

If $C_{ext} \le 1000$ pF the graph shown on Figure 8 can be used to determine the output pulse width. Figure 9 shows how K will change for $C_{ext} \le 1000$ pF if V_{CC} and V_{RC} are connected to the same power supply. The pulse width t_W in nanoseconds is approximated by


 $t_W = 6 + 0.05 C_{ext} (pF) + 0.45 R_{ext} (k\Omega) C_{ext} + 11.6 R_{ext}$

In order to trim the output pulse width, it is necessary to include a variable resistor between V_{CC} and the R_{ext}/C_{ext} pin or between V_{CC} and the R_{ext}/C_{ext} pin of between V_{CC} and the R_{ext} pin of the LS122. Figure 10, 11, and 12 show how this can be done. R_{ext} remote should be kept as close to the monostable as possible.

Retriggering of the part, as shown in Figure 3, must not occur before C_{ext} is discharged or the retrigger pulse will not have any effect. The discharge time of C_{ext} in nanoseconds is guaranteed to be less than 0.22 C_{ext} (pF) and is typically 0.05 C_{ext} (pF).

For the smallest possible deviation in output pulse widths from various devices, it is suggested that C_{ext} be kept $\ge 1000 \text{ pF}.$

WAVEFORMS

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)
--

			Limits					
Symbol	Parameter		Min	Тур	Max	Unit	Test Conditions	
V _{IH}	Input HIGH Voltage		2.0			V	Guaranteed Input HIGH Voltage f All Inputs	
V _{IL}	Input LOW Voltage				0.8	V	Guaranteed Input LOW Voltage All Inputs	
V _{IK}	Input Clamp Diode Voltage			-0.65	-1.5	V	V _{CC} = MIN, I _{IN} = – 18 mA	
V _{OH}	Output HIGH Voltage		2.7	3.5		V	V_{CC} = MIN, I_{OH} = MAX, V_{IN} = V_{IH} or V_{IL} per Truth Table	
	Output LOW Voltage			0.25	0.4	V		$V_{CC} = V_{CC} MIN,$
V _{OL}				0.35	0.5	V	l _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
	Input HIGH Current				20	μA	V _{CC} = MAX, V _{IN}	= 2.7 V
IIH					0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
IIL	Input LOW Current				-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
I _{OS}	Short Circuit Current (Note 2	2)	-20		-100	mA	V _{CC} = MAX	
		LS122			11		V _{CC} = MAX	
I _{CC}	Power Supply Current	LS123			20	mA	VCC = MAX	

AC CHARACTERISTICS (T_A = 25°C, V_{CC} = 5.0 V)

	LS123			20				
2. Not more than one output should be shorted at a time, nor for more than 1 second. AC CHARACTERISTICS ($T_A = 25^{\circ}C$, $V_{CC} = 5.0$ V)								
			Limits	S	1011			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions		
t _{PLH} t _{PHL}	Propagation Delay, A to Q Propagation Delay, A to Q		23 32	33 45	ns	C _{ext} = 0		
t _{PLH} t _{PHL}	Propagation Delay, B to Q Propagation Delay, B to Q	1	23 34	44 56	ns	$C_{L}^{ort} = 15 \text{ pF}$ R _{ext} = 5.0 kΩ		
t _{PLH} t _{PHL}	Propagation Delay, Clear to \overline{Q} Propagation Delay, Clear to Q		28 20	45 27	ns	$R_L = 2.0 \text{ k}\Omega$		
t _{W min}	A or B to Q		116	200	ns	C _{ext} = 1000 pF, R _{ext} = 10 kΩ,		
t _W Q	A to B to Q	4.0	4.5	5.0	μs	$C_L = 15 \text{ pF}, R_L = 2.0 \text{ k}\Omega$		

AC SETUP REQUIREMENTS (T_A = 25°C, V_{CC} = 5.0 V)

	Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Pulse Width	40			ns	
	Q *					

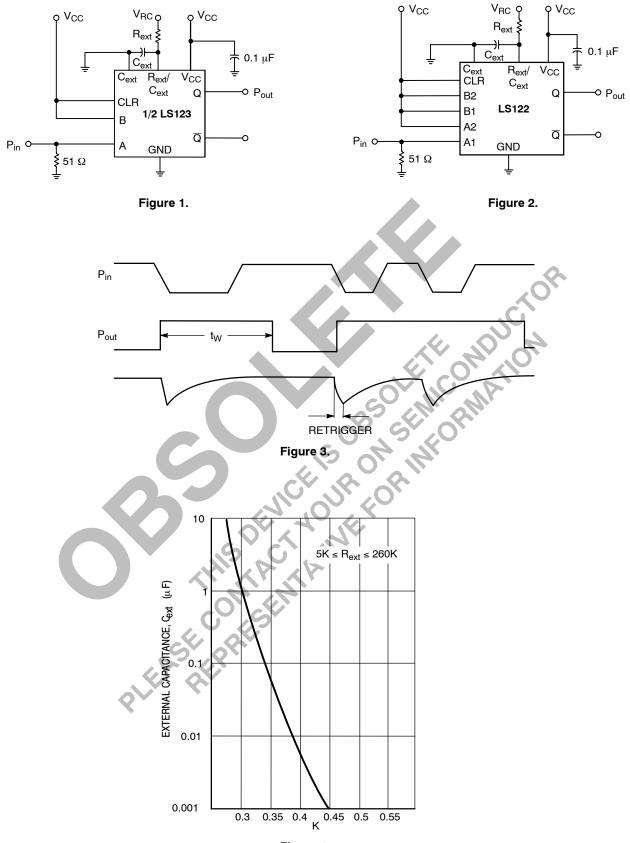
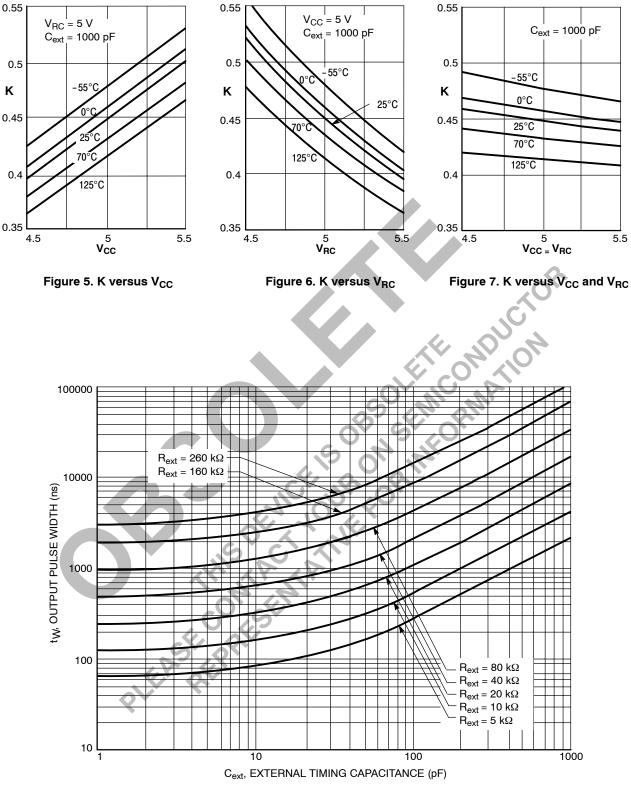
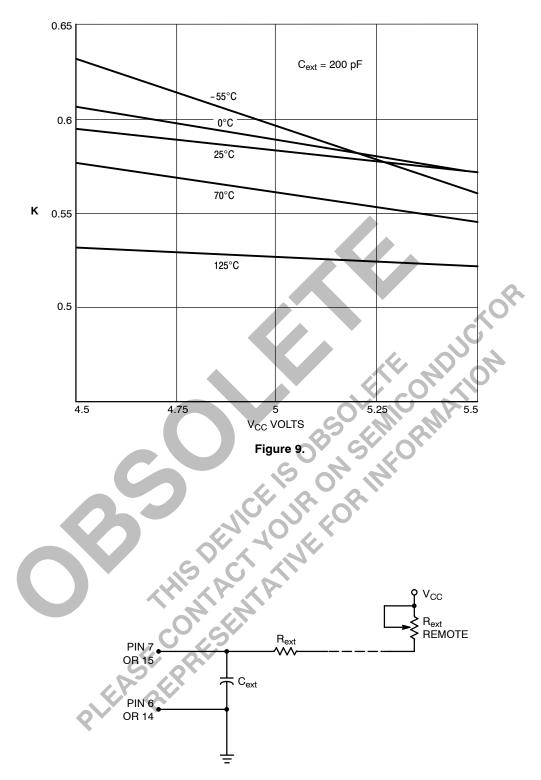
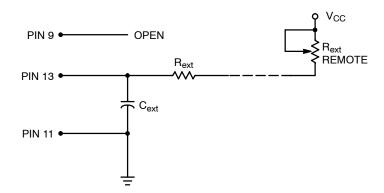
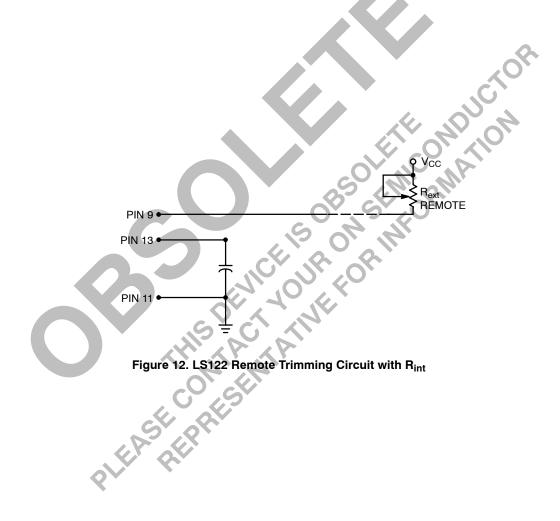
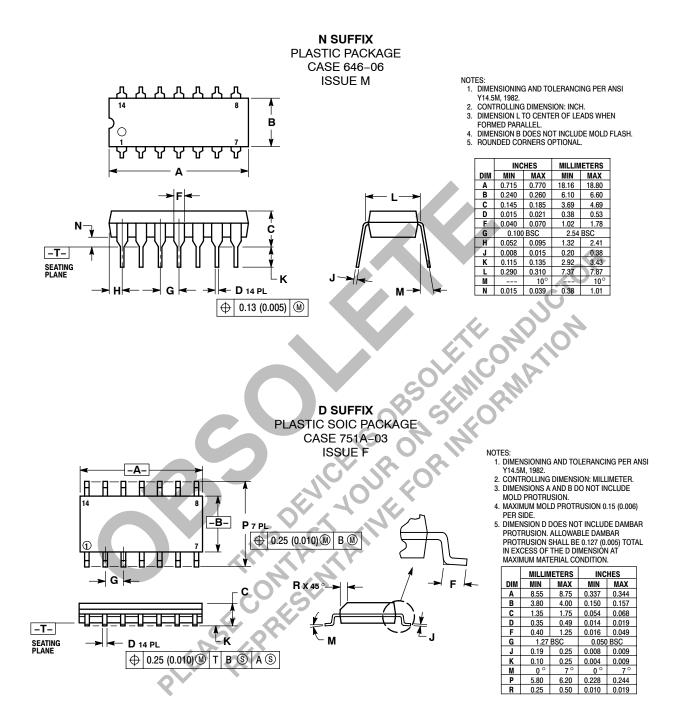
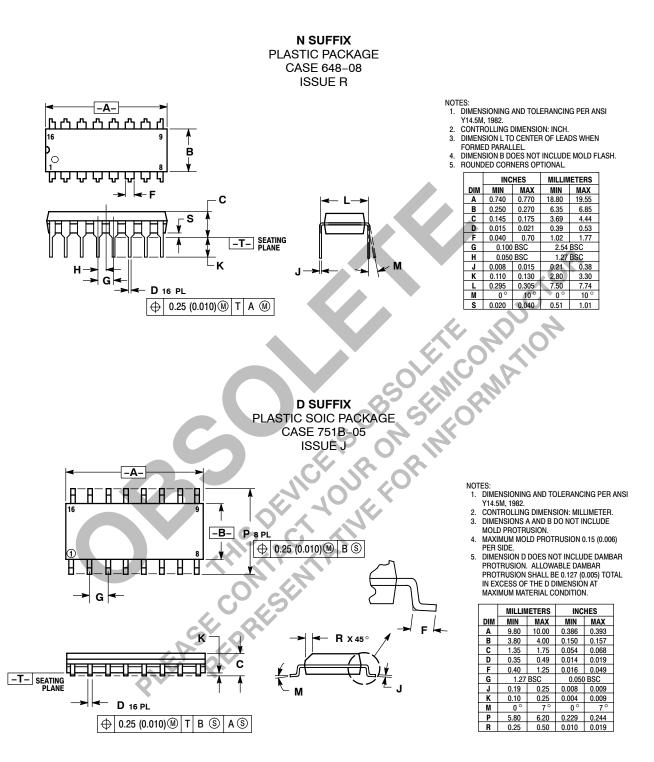


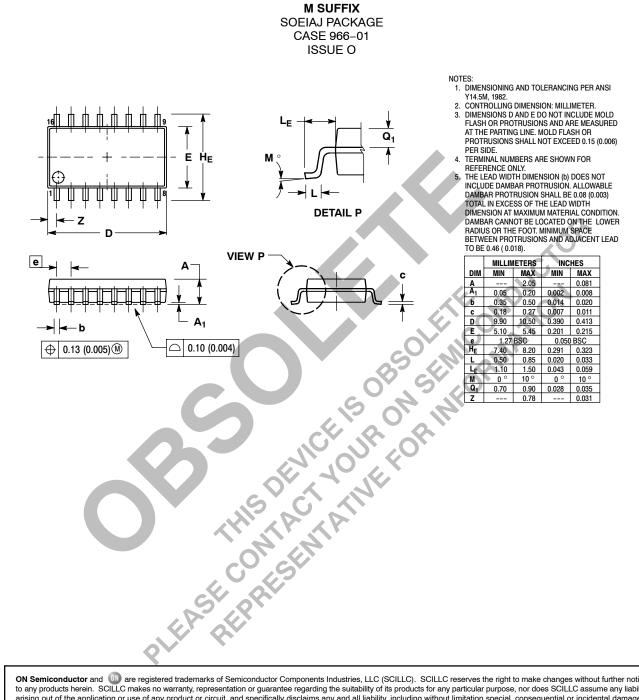
Figure 4.


Figure 8.






PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS

ON Semiconductor and images are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agolocultor is a subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative