
Version: 1.1 Document code: HB-WI7.3-580-2018 Effective date : 2018-12-27 Page: 1 of 3

SMD1210-150C-6V

RoHS 📚

-											
Feature											
٠	Resettable over current and over	er temperature protection	Low resistance								
•	Small size of 1210		Fast time-to-trip								
٠	Small footprint		RoHS complaint								
Applic	ation										
•	Computer	 Industrial controls 	Multimedia								
٠	Battery	Automotive	Game machines								
٠	Mobile phones	Portable electronics	Telephony and broadband								
Part N	Part Numbering										
SMD1	$\frac{SMD1210}{C} = \frac{C}{C} = \frac{C}{C}$										
	Voltage Category										

Product Dimensions in Millimeter

Hold Current

Series

Part Number	А		В		С		D	E
	Min	Max	Min	Мах	Min	Мах	Min	Min
SMD1210-150C-6V	3.00	3.50	2.35	2.80	0.50	1.20	0.30	0.10

Electrical Characteristics

	I(A)		V _{max}	I _{max}	\mathbf{Pd}_{typ}	T _{trip}		R_{min}	R _{1max}
Part Number	25 ℃		-	-	-	25 °C	Ţ,	25 ℃	
	Hold	Trip	(V)	(A)	(W)	Current(A)	Time(S)	(Ω)	(Ω)
SMD1210-150C-6V	1.50	3.00	6.0	100	0.80	8.00	0.50	0.03	0.11

Polymer PTC Thermistor

Specifications are subject to change without notice

www.bnstar.net

Surface-Mount Device

SMD1210-150C-6V

RoHS 🍉

I_H=Hold current: maximum current at which the device will not trip at 25° C still air reflow soldering of 260° C for 20 sec. I_T=Trip current: minimum current at which the device will always trip at 25° C still air reflow soldering of 260° C for 20 sec. V_{max}=Maximum continuous voltage device can withstand without damage at rated current

 v_{max} =Maximum continuous voltage device can withstand without damage at rated current

 I_{max} =Maximum fault current device can withstand without damage at rated voltage.

 T_{trip} =Maximum time to trip(s) at assigned current reflow soldering of 260 $^\circ C$ for 20 sec.

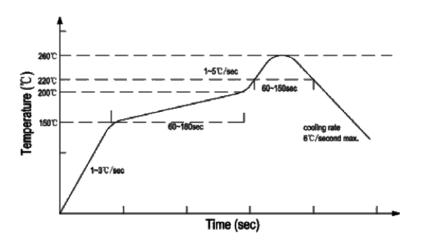
 $\mathsf{Pd}_{\mathsf{typ}}$ =Typical power dissipation: typical amount of power dissipated by the device when in state air environment.

R_{min}= Minimum resistance of device in initial (un-soldered) state.

 R_{1max} =Maximum resistance of device at 25 °C measured one hour after reflow soldering of 260 °C for 20 sec.

Value specified is determined by using the PWB with 0.030 *1.5oz copper traces.

Caution: Operation beyond the specified rating may result in damage and possible arcing and flame.


Environmental Specifications

Test	Test Conditions	Accept /Reject Criteria	
Recommended storage conditions	40°C max, 70% R.H. max	No change	
Passive aging:	85°C, 1000 hours	≤ R _{1max}	
Moisture Resistance	85% RH,85℃,1000hrs	≤ R _{1max}	
Thermal Shock	MIL-STD-202 Method 107G +85°C /-40°C 20 times	≤ R _{1max}	
Vibration	MIL-STD-883C, Method 2007.1, Condition A	No change	
Solvent Resistance	MIL-STD-202, Method 215	No change	
Moisture Level Sensitivity	Level 2, J-STD-020C	No change	

Thermal Derating [Hold Current (A) at Ambient Temperature (°C)]

Part Number	Maximum Ambient Operating Temperature ($^\circ\!\mathbb{C}$)								
	-40	-20	0	25	40	50	60	70	85
SMD1210-150C-6V	2.13	1.92	1.71	1.50	1.26	1.14	1.01	0.89	0.71

Solder Reflow Recommendation

Reflow --curve

Surface-Mount Device

SMD1210-150C-6V

RoHS 📚

Recommended reflow methods:IR,hot air oven ,nitrogen oven

Devices can be cleaned using standard industry methods and solvents.

NOTE:

If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.

Caution: Operation beyond the rated voltage or current may result in rupture electrical arcing or flame

Packaging Quantity and Marking

Device	Marking	Standard Quantity (pcs)		
SMD1210-150C-6V	В 150	4000		

NOTE:

BNstar Co.,Ltd. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of

BNstar's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. BNstar Co.,Ltd., reserves the right to discontinue or make changes to its products at any time without notice.

Website: http://www.bnstar.net

For additional information, please contact your local Sales Representative.

©Copyright 2006, BNstar Co.,Ltd.

CAUTION:

Operation beyond the maximum ratings or improper use may result in device damage and possible electrical arcing and flame. The devices are intended for protection against occasional over-current or over temperature fault conditions and should not be used when repeated fault conditions or prolonged trip events are anticipated. Device performance can be impacted negatively if devices are handled in a manner inconsistent with recommended electronic, thermal, and mechanical procedures for electronic components.

Contact information

BNSTAR NEW MATERIALS CO., LTD. 130Meilong Road Shanghai, P.R.China Tel:86-021-64251576 Fax: 86-021-64250020 EMAIL: info@bnstar.net

Rev. letter		Date	
Design	Check	Audit	Approve