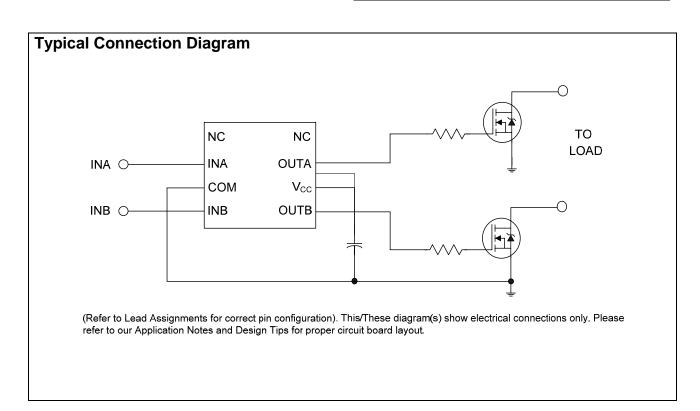


IRS4426/IRS4427/IRS4428 DUAL LOW SIDE DRIVER

Features

- Gate drive supply range from 6 V to 20 V
- CMOS Schmitt-triggered inputs
- 3.3V and 5V logic compatible
- Two independent gate drivers
- Matched propagation delay for both channels
- Outputs in phase with inputs
- Leadfree, RoHS compliant

Typical Applications


- General Purpose Dual Low Side Driver
- DC-DC converters

Product Summary

Topology	General Driver
V _{OUT}	6V - 20V
I _{o+} & I _{o-} (typical)	2.3A & 3.3A
t _{on} & t _{off} (typical)	50ns & 50ns

Package Type

Table of Contents	Page
Typical connection diagram	1
Description	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	5
Static Electrical Characteristics	6
Dynamic Electrical Characteristics	7
Functional Block Diagram	8
Input/Output Pin Equivalent Circuit Diagram	10
Lead Definitions	11
Lead Assignments	11
Application Information and Additional Details	12
Package Details: SOIC8	14
Package Details: SOIC8, Tape and Reel	15
Part Marking Information	16
Ordering Information	17

International TOR Rectifier

IRS4426/IRS4427/IRS4428

Description

The IRS4426/IRS4427/IRS4428 are low voltage, high speed power MOSFET and IGBT drivers. Proprietary latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays between two channels are matched.

Qualification Information[†]

Qualification into	illation				
		Industrial ^{††}			
Qualification Level		Comments: This family of ICs has passed JEDEC's			
Qualification Level		Industrial qualification. IR's Consumer qualification level is			
		granted by extension of the higher Industrial level.			
Majatura Canaitivitu	Level	MSL2 ^{†††} 260°C			
Moisture Sensitivity	Levei	(per IPC/JEDEC J-STD-020)			
	Machine Model	Class B			
ESD	Machine Model	(per JEDEC standard JESD22-A115)			
ESD	Human Body Model	Class 3A			
	Human Body Model	(per EIA/JEDEC standard EIA/JESD22-A114)			
IC Latab Un Tast		Class I, Level A			
IC Latch-Up Test		(per JESD78)			
RoHS Compliant	·	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min	Max	Units	
V _{CC}	Fixed supply voltage	-0.3	25		
Vo	Output voltage	-0.3	V _{CC} + 0.3		
V_{IN}	Logic input voltage	-0.3	V _{CC} + 0.3		
P_{D}	Package power dissipation @ TA ≤ 25°C	_	0.625	W	
Rth_JA	Thermal resistance, junction to ambient	_	200	°C/W	
T_J	Junction temperature	_	150)	
Ts	Storage temperature	-55	150	°C	
TL	Lead temperature (soldering, 10 seconds)	_	300		

Recommended Operating Conditions

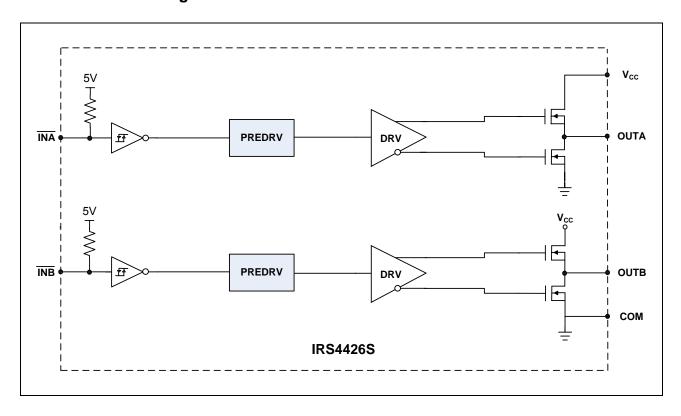
For proper operation, the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to COM unless otherwise stated in the table. The offset rating is tested with supply of V_{CC} = 15V.

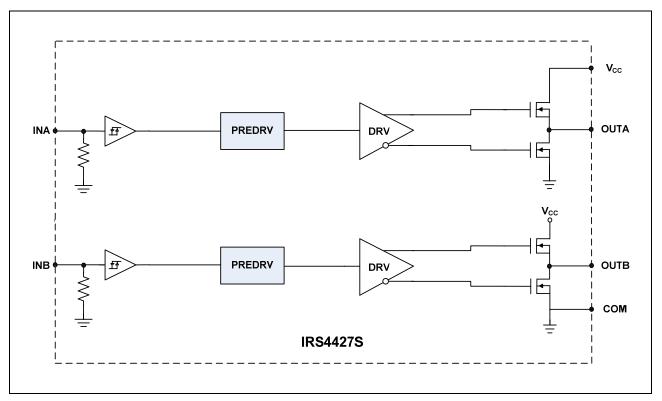
Symbol	Definition	Min	Max	Units
V_{CC}	Fixed supply voltage	6	20	
Vo	Output voltage	0	V_{CC}	V
V_{IN}	Logic input voltage	0	V_{CC}	
T _A	Ambient temperature	-40	125	°C

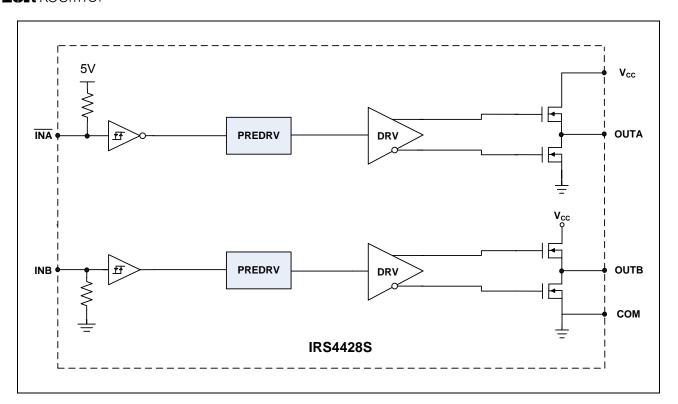
Static Electrical Characteristics

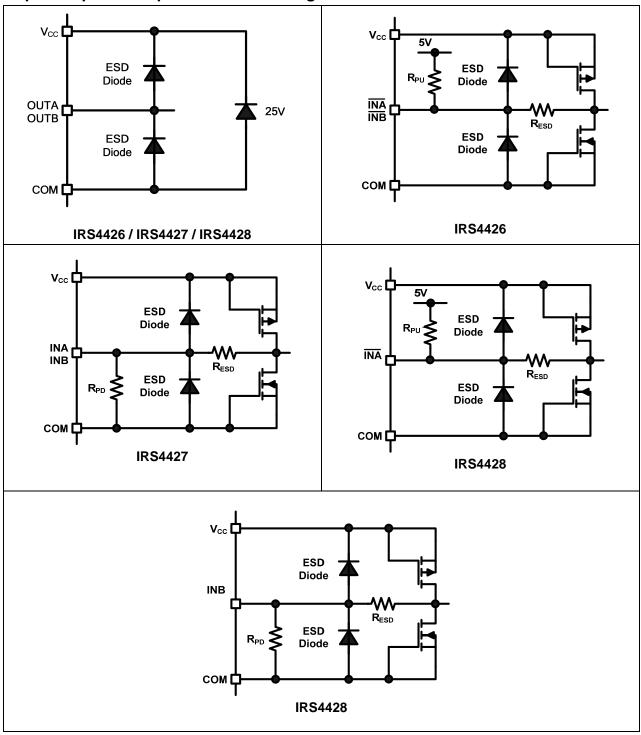
 V_{CC} = 15V, T_A = 25°C unless otherwise specified. The V_{IN_c} and I_{IN} parameters are referenced to COM and are applicable to input leads: INA and INB. The V_O and I_O parameters are referenced to COM and are applicable to the output leads: OUTA and OUTB.

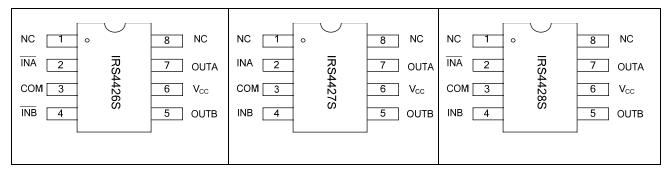
Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V _{IH}	Logic "0" input voltage (OUTA = LO, OUTB = LO) (IRS4426) Logic "1" input voltage (OUTA=HI,OUTB=HI) (IRS4427) Logic "0" input voltage (OUTA=LO), Logic "1" input voltage (OUTB=HI) (IRS4428)	2.5	_	_	V	
V _{IL}	Logic "1" input voltage (OUTA = HI, OUTB = HI) (IRS4426) Logic "0" input voltage (OUTA=LO,OUTB=LO) (IRS4427) Logic "1" input voltage (OUTA=HI), Logic "0" input voltage (OUTB=LO) (IRS4428)	_	_	0.8	V	
V_{OH}	High level output voltage, V _{BIAS} -V _O	_	_	1.4		$I_O = 0 \text{ mA}$
V_{OL}	Low level output voltage, V _O		_	0.15		I _O = 20 mA
I _{IN+}	Logic "1" input bias current	_	5	15		$V_{IN} = 0V \text{ (IRS4426)}$ $V_{IN} = 5V \text{ (IRS4427)}$ $V_{INA} = 0V \text{ (IRS4428)}$ $V_{INB} = 5V \text{ (IRS4428)}$
I _{IN-}	Logic "0" input bias current	-30	-10	_	μΑ	$V_{IN} = 5V (IRS4426)$ $V_{IN} = 0V (IRS4427)$ $V_{INA} = 5V (IRS4428)$ $V_{INB} = 0V (IRS4428)$
I _{QCC}	Quiescent V _{CC} supply current	_	100	200		V _{IN} = 0V or 5V
I _{O+}	Output high short circuit pulsed current	_	2.3	_	٨	$V_{O} = 0V, V_{IN} = COM$ $(IRS4426)$ $V_{O} = 0V, V_{IN} = 5V$ $(IRS4427)$ $V_{O} = 0V, V_{INA} = COM$ $(IRS4428)$ $V_{O} = 0V, V_{INB} = 5V$ $(IRS4428)$
I _{O-}	Output low short circuit pulsed current		3.3	_	A	$V_{O} = 15V, V_{IN} = 5V$ $(IRS4426)$ $V_{O} = 15V, V_{IN} = COM$ $(IRS4427)$ $V_{O} = 15V, V_{INA} = 5V$ $(IRS4428)$ $V_{O} = 15V, V_{INB} = COM$ $(IRS4428)$




Dynamic Electrical Characteristics V_{CC} = 15V, T_A = 25°C, and C_L = 1000pF unless otherwise specified.


Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay		50	95		
t _{off}	Turn-off propagation delay	_	50	95	no	Figure 2
t _r	Turn-on rise time	_	25	55	ns	Figure 2
t _f	Turn-off fall time	_	25	55		


Functional Block Diagram


Input/Output Pin Equivalent Circuit Diagrams

Lead Definitions

PIN	Symbol	Description			
1	NC	No connection			
2	INA	Logic input for gate driver output (OUTA), out of phase (IRS4426, IRS4428), in phase (IRS4427)			
3	GND	Ground			
4	INB	Logic input for gate driver output (OUTB), out of phase (IRS4426), in phase (IRS4427, IRS4428)			
5	OUTB	Gate drive output B			
6	V _{CC}	Supply voltage			
7	OUTA	Gate drive output A			
8	NC	No connection			

Lead Assignments

Application Information and Additional Details

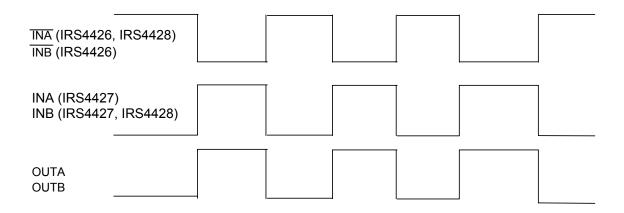


Figure 1: Input/output Timing Diagram

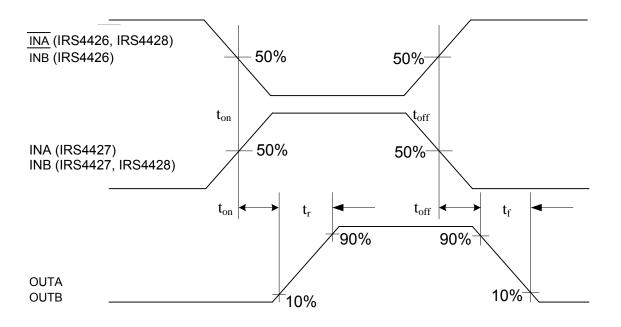
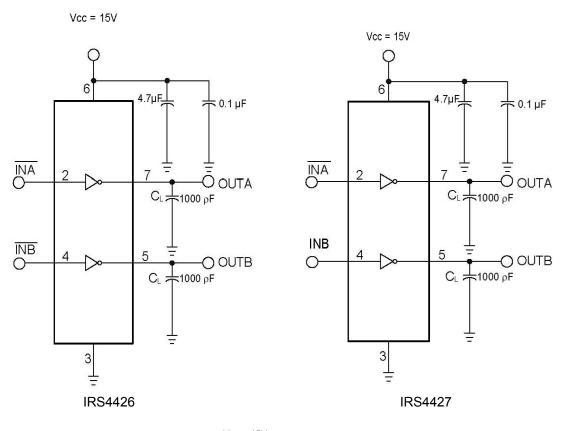
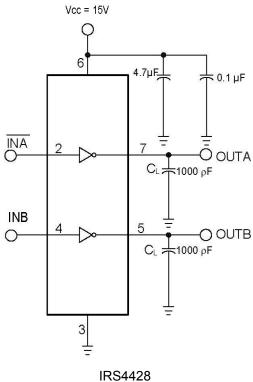
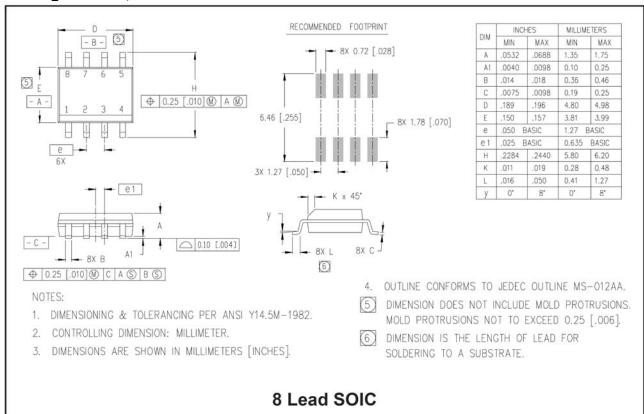




Figure 2: Switching Time Waveform Definitions


www.irf.com

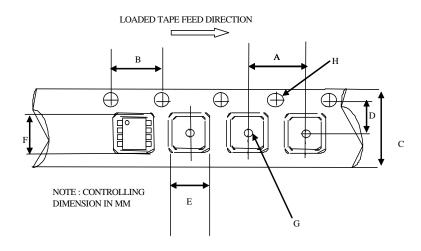
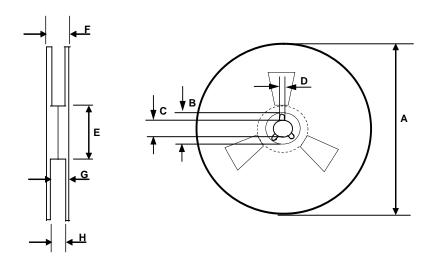


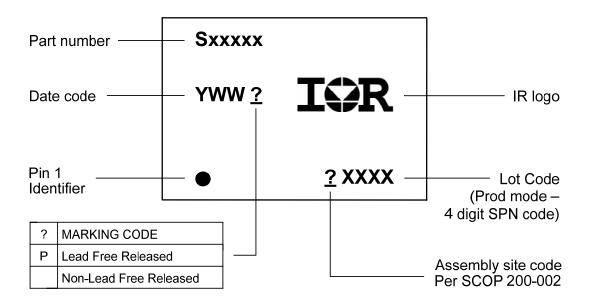
Figure 3: Switching Time Test Circuit

Package Details, SOIC8N



Package details: SOIC8N, Tape and Reel

CARRIER TAPE DIMENSION FOR 8SOICN


	Metric		Imperial		
Code	Min	Max	Min	Max	
Α	7.90	8.10	0.311	0.318	
B C	3.90	4.10	0.153	0.161	
С	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248 0.25		
F	5.10	5.30	0.200 0.20		
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

	Me	etric	Imp	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
C	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E F	98.00	102.00	3.858	4.015
	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

Ordering Information

5 5 44 .		Standard F	Pack		
Base Part Number	Package Type	Form	Quantity	Complete Part Number	
ID044000	SOIC8N	Tube/Bulk	95	IRS4426SPBF	
IRS4426S	3010814	Tape and Reel	2500	IRS4426STRPBF	
ID0 44070	SOIC8N	Tube/Bluk	95	IRS4427SPBF	
IRS4427S	3010814	Tape and Reel	2500	IRS4427STRPBF	
ID044000	SOIC8N	Tube/Bulk	95	IRS4428SPBF	
IRS4428S		Tape and Reel	2500	IRS4428STRPBF	

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

> For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105