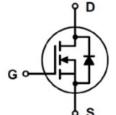
BCW170N650T1

N-Channel Silicon Carbide Power MOSFET

1700 V, 9 A, 650 m Ω

Features


- · High blocking voltage
- · Low on-resistance with high junction temperature
- · High-speed switching with low capacitances
- · Fast intrinsic diode with low reverse recovery (Qrr)

BV _{DSS, Tc=25℃}	I _{D, Tc=25℃}	R _{DS(on),typ}	$\mathbf{Q}_{g,typ}$
1700 V	9A	650 mΩ	13.2 nC

Benefits

- Higher System Efficiency
- · Reduce cooling requirements
- · Increased power density
- · Enabling higher frequency
- · Minimize gate ringing

Applications

- · Switch Mode Power Supplies
- DC/DC converters
- Solar Inverters
- · Battery Chargers
- Motor Drives

Absolute Maximum Ratings (T_C = 25°C unless otherwisenoted)

Symbol	Parameter	Value	Unit	
V _{DSS}	Drain to Source Voltage	Drain to Source Voltage		
V _{GSmax}	Gate to Source Voltage (AC f>1Hz)	-10 / +25	V	
V_{GSop}	Recommended Operation Value	-5 / +20	V	
I _D	Drain Current	V _{GS} =20V, (T _C = 25°C)	9	Α
I _{DM}	Drain Current	Pulsed (Note1)	18	Α
P _D	Power Dissipation	(T _C = 25°C)	85	W
T _J , T _{STG}	Operating and Storage Temperature Rang	-55 to 175	°C	
T _L	Maximum Lead Temperature for Soldering, 1/8" from Case for 10 Seconds		260	°C

*Note 1 : Limited by maximum junction temperature.

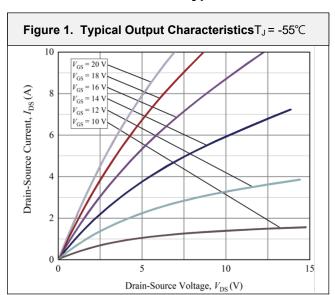
Thermal Characteristics

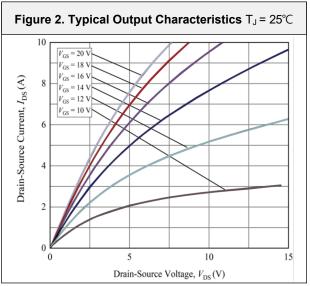
Symbol	Parameter	Value	Unit
R _{0JC}	Thermal Resistance, Junction to Case, Max.	1.74	°C/W

Package Marking and Ordering Information

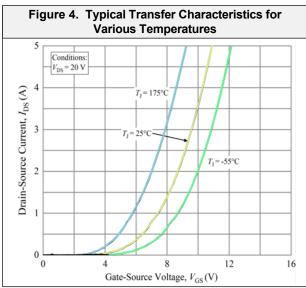
Part Number	Top Marking	Package	Packing Method	Quantity
BCW170N650T1	BCW170N650T1	TO247-3	Tube	30 units

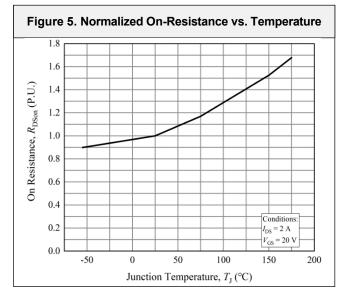
BCW170N650T1

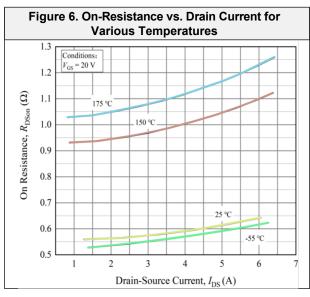

1700V 650mΩ Silicon Carbide Power MOSFET

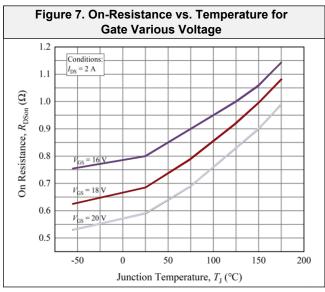


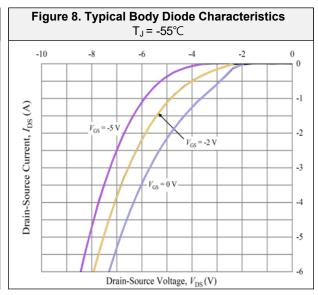

Electrical Characteristics (T_C = 25°C unless otherwise noted)

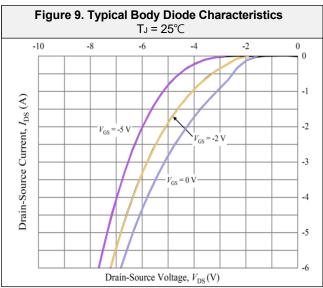

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Off Chara	octeristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 100 \mu\text{A}$	1700			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 1700 V, V _{GS} = 0 V		0.9	100	μΑ
I _{GSS}	Gate-Source Leakage Current	V _{GS} = +20 V		2	250	nA
n Chara	cteristics					
V _{GS(th)}	Gate Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 0.5 \text{ mA}$	1.8	2.8	4.0	V
	-	V _{GS} = 20 V, I _D = 2 A		550	1000	
R _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 18 V, I _D = 2 A		650		mΩ
,		V _{GS} = 15 V, I _D = 2 A		780		-
vnamic	Characteristics		1	I	l	
C _{iss}	Input Capacitance			183		
Coss	Output Capacitance	V _{GS} = 0V, V _{DS} = 1000 V		17.1		pF
C _{rss}	Reverse Capacitance	f = 1.0 MHz, VAC = 25 mV		2.1		
E _{oss}	Stored Energy in Output Capacitance			10.1		μJ
Q _{g(tot)}	Total Gate Charge			13.2		nC
Q _{gs}	Gate to Source Charge	V_{DS} = 1200 V, I_D = 2 A V_{GS} = -5 V / +20 V		5.0		
Q_{gd}	Gate to Drain "Miller" Charge			4.5		
R _G	Internal Gate Resistance $f = 1.0 \text{ MHz}, \text{Vac} = 25 \text{ mV}$			25.2		Ω
			·			
	G Characteristics Turn-On Delay Time			5		
$\frac{t_{d(on)}}{t_r}$	Turn-On Rise Time			17		-
	Turn-Off Delay Time	$V_{DS} = 1000 \text{ V}$		13		ns
t _{d(off)}	Turn-Off Fall Time	$I_D = 2 A$ $V_{GS} = -5 V / +20 V$		55.6		
E _{on}	Turn-on Switching Energy	$R_{G (ext)} = 2.5 \Omega$ L = 70 mH		170		
E _{off}	Turn-off Switching Energy			68		μJ
ource-D	rain Diode Characteristics					
Is	Maximum Continuous Diode Forward Co	urrent			4	Α
V _{SD}	Diode Forward Voltage	V _{GS} = 0 V, I _S = 1 A		4.0		V
I _{rrm}	Peak Reverse Recovery Current			3		Α
		$V_{DS} = 1200 \text{ V}, I_{S} = 2 \text{ A},$		22		
t _{rr}	Reverse Recovery Time	V_{GS} =-5V, dif/dt = 1200 A/µs		33		ns

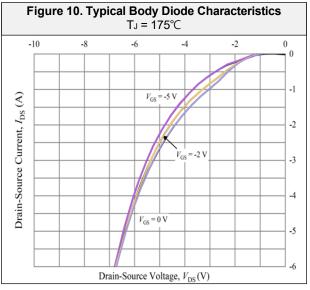


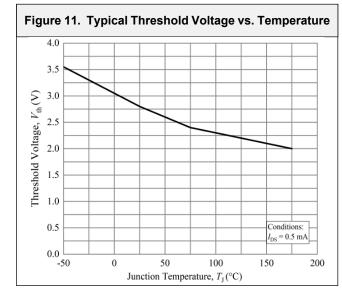


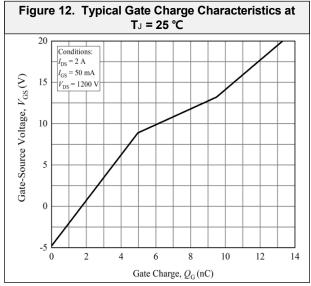


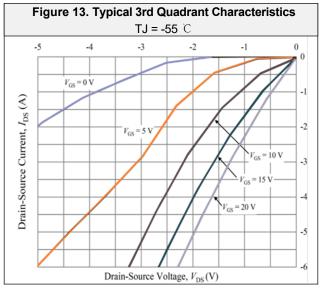


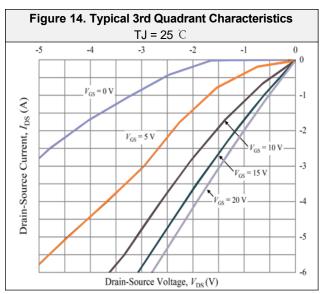


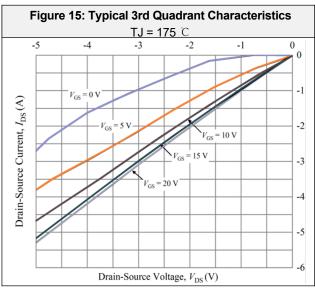


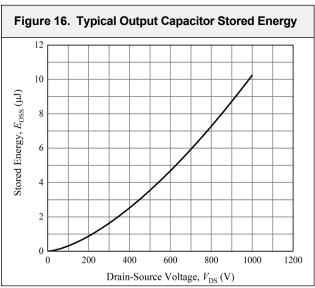


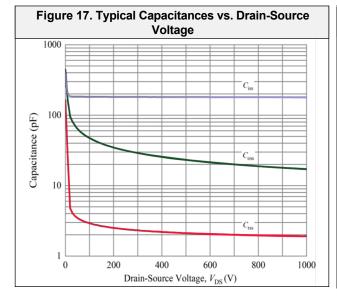


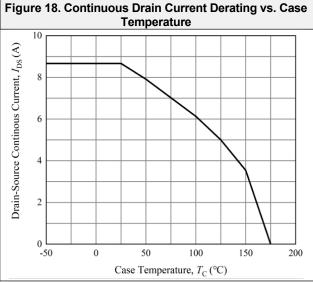


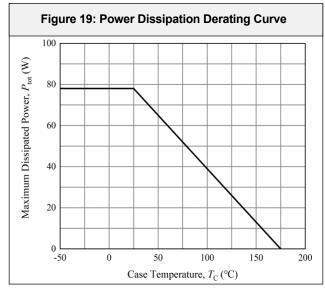


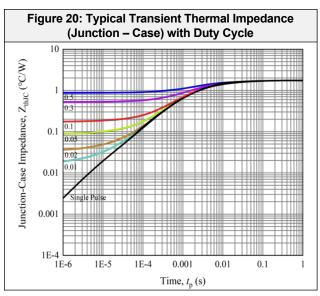


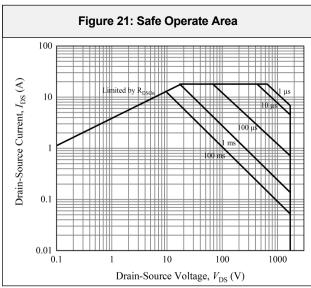


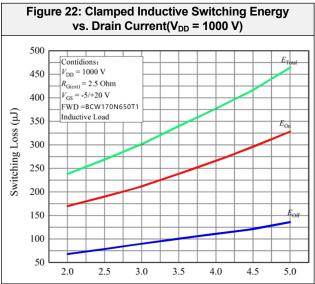


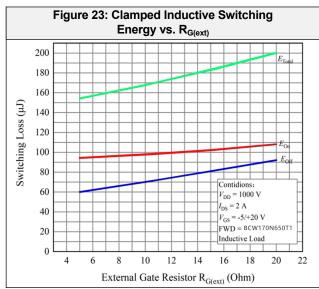


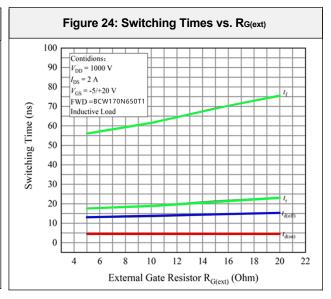


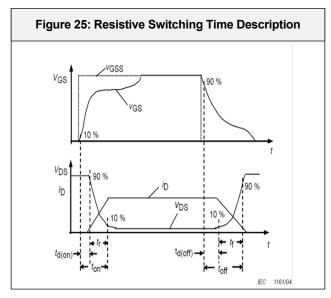


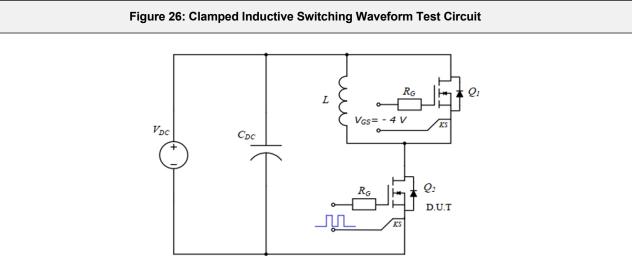


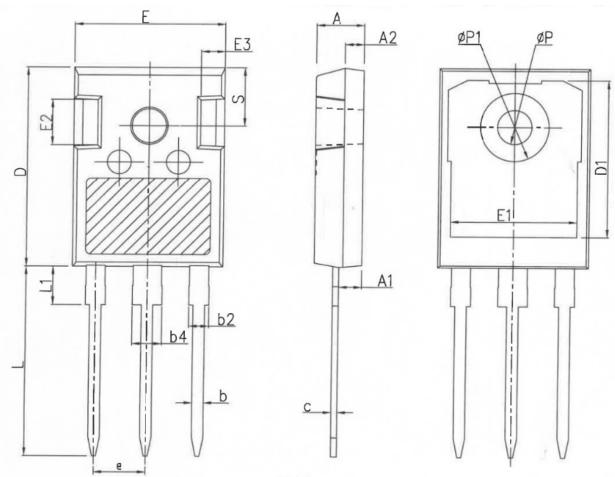












Package Outlines

TO247-3

COMMON DIMENSIONS

SYMBOL	mm			
SIMDOL	MIN	NOM	MAX	
A	4.80	5.00	5. 20	
A1	2.21	2.41	2. 59	
A2	1.85	2.00	2. 15	
b	1.11	1.21	1.36	
b2	1.91	2.01	2. 21	
b4	2.91	3.01	3. 21	
c	0.51	0.61	0.75	
D	20.70	21.00	21.30	
D1	16. 25	16. 55	16.85	
Е	15. 50	15.80	16.10	
E1	13.00	13. 30	13.60	
E2	4.80	5.00	5. 20	
E3	2.30	2.50	2.70	
е	5. 44BSC			
L	19.62	19.92	20.22	
L1	-	-	4. 30	
ΦР	3.40	3.60	3. 80	
ФР1			7. 30	
S	6. 15BSC			

^{*} Dimensions in millimeters

Disclaimer

Bestirpower reserve the right to make changes, corrections, enhancements, modifications, and improvements to Bestirpower products and/or to this document at any time without notice.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. Bestirpower does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Products or technical information described in this document.

This document is the property of Bestirpower Co,. LTD., and not allowed to copy or transformed to other format if not under the authority approval.

© 2024 bestirpower – All rights reserved