Product data sheet

1. General description

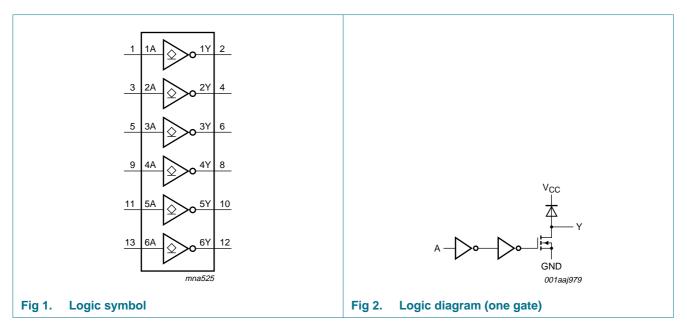
The 74HC05 is a high-speed Si-gate CMOS device that complies with JEDEC standard no. 7A.

The 74HC05 contains six inverters. The outputs of the 74HC05 are open-drain and can be connected to other open-drain outputs to implement active-LOW wired-OR or active-HIGH wired-AND functions. The open-drain outputs require pull-up resistors to perform correctly.

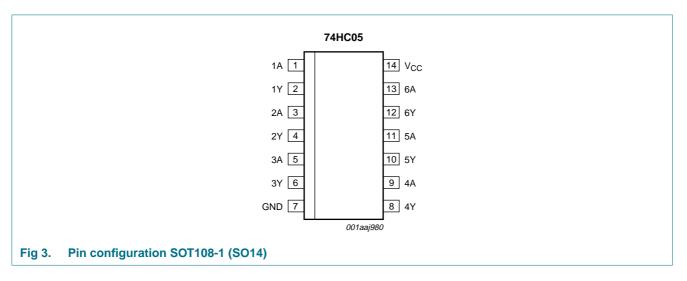
2. Features

- Wide operating voltage 2.0 V to 6.0 V
- Input levels:
 - For 74HC05: CMOS level
- Latch-up performance exceeds 100 mA per JESD 78 Class II level A
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - CDM JESD22-C101C exceeds 1000 V
- Multiple package options
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

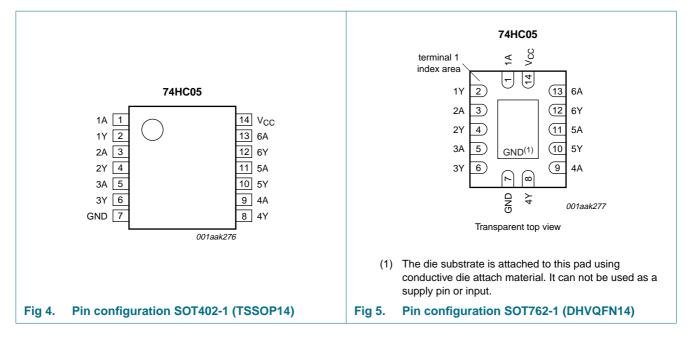
3. Ordering information


Table 1.Ordering information

Type number	Package							
	Temperature range Name		Description	Version				
74HC05D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				
74HC05PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1				
74HC05BQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1				


Hex inverter with open-drain outputs

4. Functional diagram



5. Pinning information

5.1 Pinning

Hex inverter with open-drain outputs

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
1A to 6A	1, 3, 5, 9, 11, 13	data input
1Y to 6Y	2, 4, 6, 8, 10, 12	data output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function table ^[1]	
Input	Output
nA	nY
L	Z
Н	L

[1] H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{\rm I}$ < –0.5 V or $V_{\rm I}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	20	mA
I _{ОК}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> _	20	mA
Vo	output voltage		<u>[1]</u> –0.5	V _{CC} + 0.5 V	V
74HC05_2				© Nexperia B.V. 2017.	All rights reserved

Product data sheet

Table 4. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
I _O	output current	$V_{\rm O} < V_{\rm CC}$ + 0.5 V	-	25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation		[2] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SO14 package: Ptot derates linearly with 8 mW/K above 70 °C.

For TSSOP14 packages: P_{tot} derates linearly with 5.5 mW/K above 60 °C. For DHVQFN14 packages: P_{tot} derates linearly with 4.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V)

0						
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	ns/V
		$V_{CC} = 6.0 V$	-	-	83	ns/V
· · · · · · · · · · · · · · · · · · ·						

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		−40 °C 1	to +85 °C	-40 °C te	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
VIH	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL} LOW-level input voltage	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V	
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V
V _{OL}	LOW-level	$V_I = V_{IH} \text{ or } V_{IL}$								
	output voltage	I_{O} = 20 μ A; V_{CC} = 2.0 V	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 20 μ A; V_{CC} = 4.5 V	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 5.2 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V

74HC05 2

Product data sheet

Hex inverter with open-drain outputs

-40 °C to +85 °C -40 °C to +125 °C Unit Symbol Parameter Conditions 25 °C Min Тур Max Min Max Min Max input leakage $V_I = V_{CC}$ or GND; 0.1 1 1 I_I μΑ _ _ $V_{CC} = 6.0 V$ current per input pin; $V_I = V_{II}$; **OFF-state** 0.5 5.0 1₀₇ -10 μA _ -- $V_{O} = V_{CC}$ or GND; output current other inputs at V_{CC} or GND; $V_{CC} = 6.0 \text{ V}; I_{O} = 0 \text{ A}$ $V_I = V_{CC}$ or GND; $I_O = 0$ A; Icc supply current 2.0 20 40 μA - $V_{CC} = 6.0 V$ C input 3.5 pF -----capacitance

Static characteristics ... continued Table 6.

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

10. Dynamic characteristics

Table 7. **Dynamic characteristics**

GND = 0 V: for test circuit see Figure 7.

Symbol	Parameter	Conditions			25 °C		-40 °C to	o +125 °C	Unit
			Mi	n	Тур	Max	Max (85 °C)	Max (125 °C)	_
t _{PLZ}	LOW to OFF-state	nA to nY; see Figure 6	·				·		
	propagation delay	$V_{CC} = 2.0 V$	-		20	90	115	135	ns
		$V_{CC} = 4.5 V$	-		11	18	23	27	ns
		$V_{CC} = 6.0 V$	-		10	15	20	23	ns
	OFF-state to LOW	nA to nY; see <u>Figure 6</u>							
	propagation delay	$V_{CC} = 2.0 V$	-		22	90	115	135	ns
		$V_{CC} = 4.5 V$	-		9	18	23	27	ns
		$V_{CC} = 6.0 V$	-		8	15	20	23	ns
t _{THL}	HIGH to LOW	see Figure 6							
	output transition	$V_{CC} = 2.0 V$	-		18	75	95	110	ns
time	ume	$V_{CC} = 4.5 V$	-		6	15	19	22	ns
		$V_{CC} = 6.0 V$	-		5	13	16	19	ns
C _{PD}	power dissipation capacitance	per inverter; V _I = GND to V _{CC} ; $V_{CC} = 5.0 \text{ V}$	<u>[1]</u> -		4	-	-	-	pF

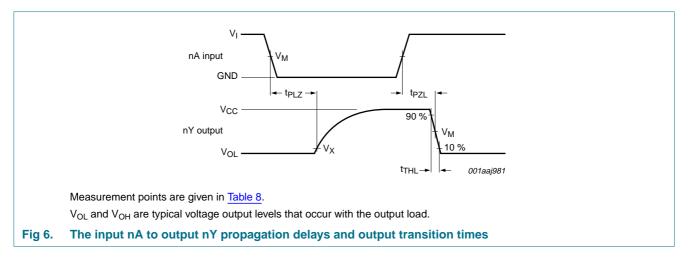
[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (0.5 \times C_{L} \times V_{O}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

V_O = output voltage in V (output HIGH);

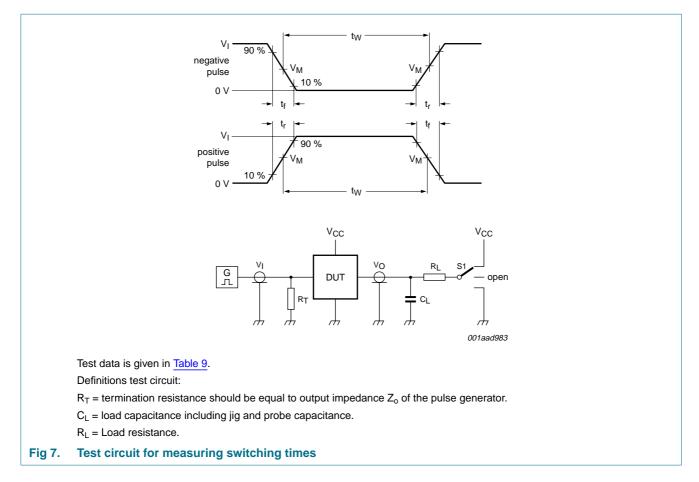

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 R_L = load resistance in M Ω ;

 C_L = load capacitance in pF;

11. Waveforms


Table 8. Measurement points

Input	Output			
V _M	V _M	V _X		
0.5V _{CC}	0.5V _{CC}	0.1V _{CC}		

Nexperia

74HC05

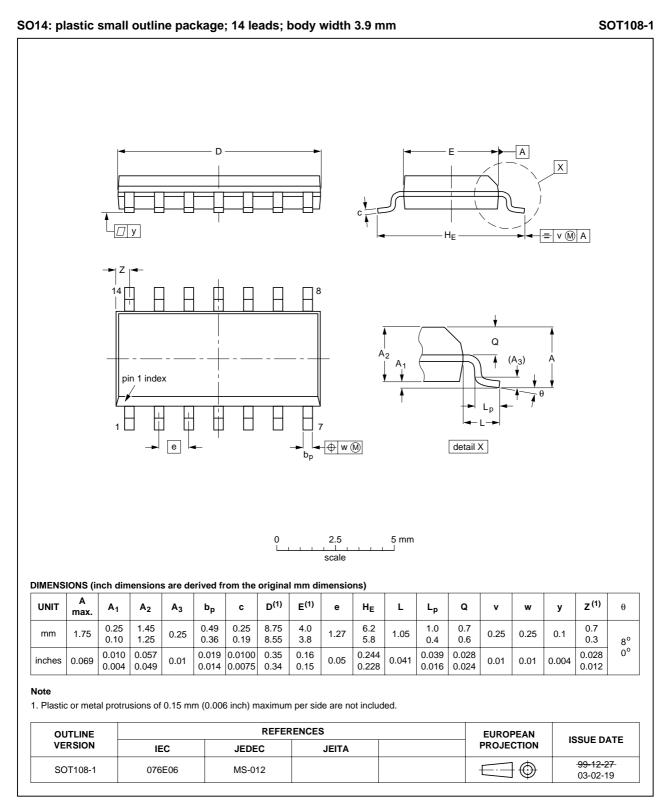

Hex inverter with open-drain outputs

Table 9. Test data

Input		Load		S1 position
VI	t _r , t _f	C _L R _L		t _{PZL} , t _{PLZ}
V _{CC}	6 ns	50 pF	1 kΩ	V _{CC}

12. Package outline

Fig 8. Package outline SOT108-1 (SO14)

74HC05_2

Product data sheet

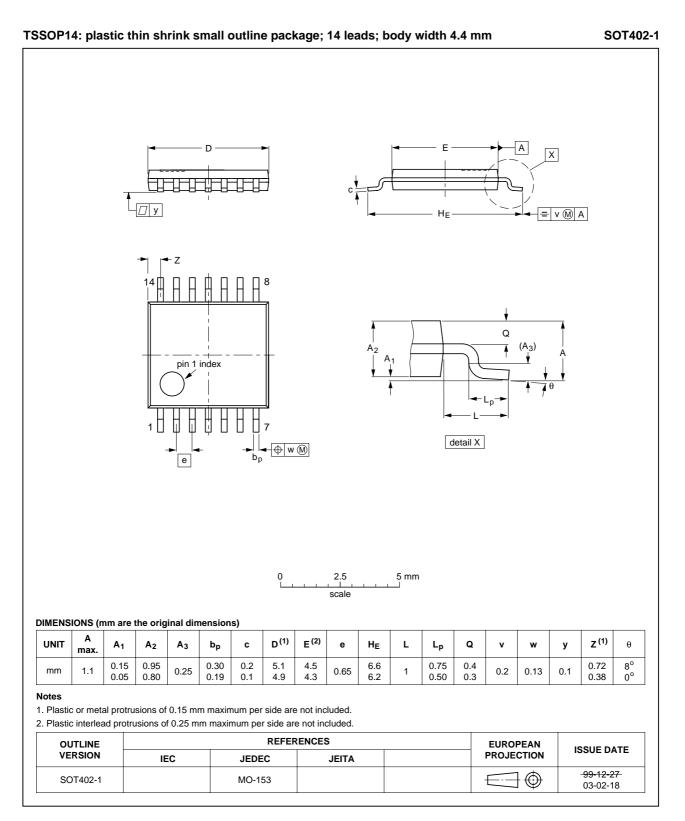
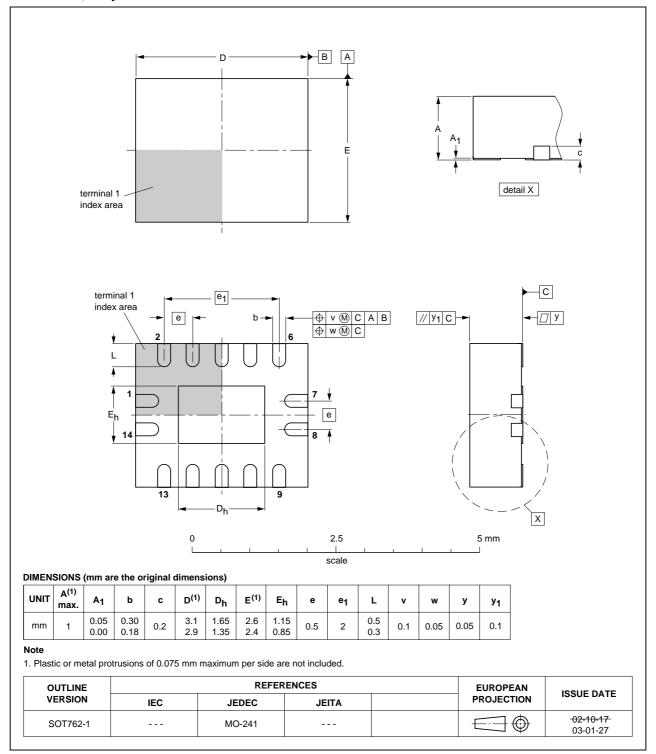



Fig 9. Package outline SOT402-1 (TSSOP14)

74HC05_2

Product data sheet

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 10. Package outline SOT762-1 (DHVQFN14)

74HC05_2

Product data sheet

13. Abbreviations

Table 10. Abbreviations					
Acronym	Description				
CDM	Charged Device Model				
CMOS	Complementary Metal-Oxide Semiconductor				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
HBM	Human Body Model				

14. Revision history

Table 11.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC05_2	20090618	Product data sheet	-	74HC05_1
Modifications:	 Added type nu package) 	umbers 74HC05PW (TSSOP	14 package) and 74HC	C05BQ (DHVQFN14
74HC05_1	20090427	Product data sheet	-	-

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications — Applications that are described herein for any of these

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at <u>http://www.nexperia.com/profile/terms</u>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74HC05_2

Hex inverter with open-drain outputs

17. Contents

1	General description 1
2	Features 1
3	Ordering information 1
4	Functional diagram 2
5	Pinning information 2
5.1	Pinning 2
5.2	Pin description 3
6	Functional description 3
7	Limiting values 3
8	Recommended operating conditions 4
9	Static characteristics 4
10	Dynamic characteristics 5
11	Waveforms 6
12	Package outline 8
13	Abbreviations 11
14	Revision history 11
15	Legal information 12
15.1	Data sheet status 12
15.2	Definitions 12
15.3	Disclaimers
15.4	Trademarks 12
16	Contact information 12
17	Contents 13

© Nexperia B.V. 2017. All rights reserved

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 18 June 2009