

ME3101

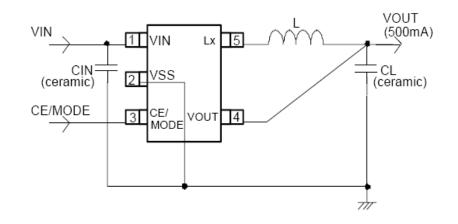
500mA 同步降压 DC/DC 转化器 ME3101 系列

概述

ME3101 是一款同步整流降压型 DC/DC。内置 0.6 Ω PMOS 驱动管和 0.7 Ω NMOS 开关管。兼容陶瓷电容, 外部只需一只电感和两只电容,可高效率的输出 500mA 电流。内置振荡器电路,振荡频率可达 1.2MHZ。ME3101 为 PFM/PWM 型自动开关控制模式,在满载时也能快速 响应,达到纹波小,效率高的效果。芯片的待机电流可降 至 1.0uA 甚至更小。

应用场合

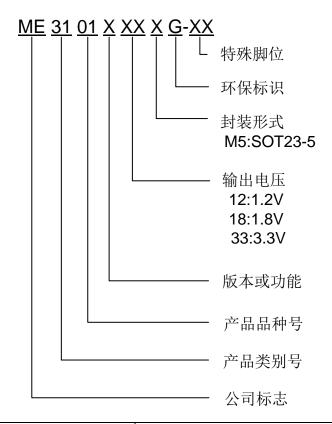
- 移动电话 (PDC, GSM, CDMA, IMT200 等)
- 蓝牙设备
- PDA
- 便携式通讯设备
- 游戏机
- 数码相机
- 无绳电话
- 笔记本


特点

- 同步整流降压 DC/DC
- 高效率: 93%(TYP)
- 低纹波电压: 10mV
- 输出电流: 500mA
- 振荡频率: 1.2MHz
- PWM/PFM 自动切换控制
- 最大占空比: 100%
- 兼容陶瓷电容
- 超小封装: SOT-23-5L
- 内置软启动电路

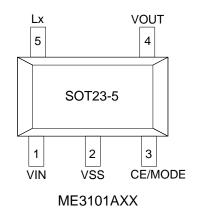
封装形式

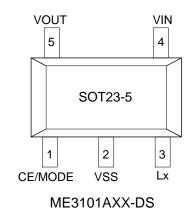
5-pin SOT23-5


典型应用图

选购指南

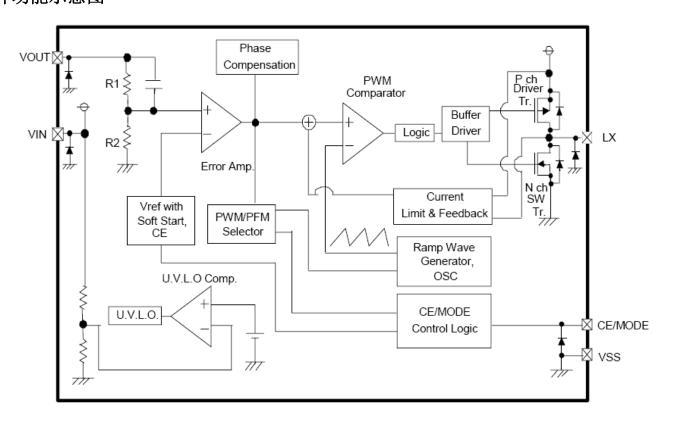
1. 产品型号说明


产品型号	产品说明
ME3101A10M5G	输出电压: 1.0V; 封装形式: SOT23-5
ME3101A12M5G	输出电压: 1.2V; 封装形式: SOT23-5
ME3101A18M5G	输出电压: 1.8V; 封装形式: SOT23-5
ME3101A30M5G	输出电压: 3.0V; 封装形式: SOT23-5
ME3101A33M5G	输出电压: 3.3V; 封装形式: SOT23-5
ME3101A10M5G-DS	输出电压: 1.0V; 封装形式: SOT23-5; 管脚排列不同
ME3101A12M5G-DS	输出电压: 1.2V; 封装形式: SOT23-5; 管脚排列不同
ME3101A18M5G-DS	输出电压: 1.8V; 封装形式: SOT23-5; 管脚排列不同
ME3101A33M5G-DS	输出电压: 3.3V; 封装形式: SOT23-5; 管脚排列不同


注意:如果您需要其他电压值和封装形式的产品,请联系我司销售人员。

V06 www.microne.com.cn Page 2 of 13

产品脚位图



脚位功能说明

ME3101AXX	ME3101AXX-DS	—————————————————————————————————————	引脚描述
引 脚 号	引 脚 号	10.4	211241田公
1	4	VIN	电源输入引脚
2	2	VSS	接地引脚
3	1	CE/MODE	使能引脚
4	5	VOUT	电压输出引脚
5	3	LX	开关引脚

芯片功能示意图

V06 www.microne.com.cn Page 3 of 13

绝对最大额定值

参数	符号	极限值	单位
Vin 脚电压	Vin	-0.3~6.5	V
LX 脚电压	VIx	-0.3∼Vin+0.3	V
Vout 脚电压	Vout	-0.3~6.5	V
CE/MODE 脚电压	Vce	-0.3∼Vin+0.3	V
LX 脚电流	llx	±1000	mA
封装功耗(SOT-23-5L)	Pd	250	mW
工作温度	T _{Opr}	-25~+85	$^{\circ}$
储存温度	T _{stg}	-40~+125	$^{\circ}$

电气参数

ME3101A10 (除特别指出,VIN=3.0V,FOSC=1.2MHz,Cin=4.7uF,CL=10uF,L=3.3uH,Ta=25℃)

参数	符号	测试条件	最小值	典型值	最大值	单位	测试电路
输出电压	Vout	Vce=Vin,lout=30mA	0.98	1.0	1.02	V	1)
输入电压	Vin		2	_	6	V	1
最大输出电流	lout.max		_	500	_	mA	1
欠压锁定电压	Vuvlo	Vce=Vin,Vout=0V, LX Voltage which Lx pin voltage holding "L" level	_	1.2	_	V	2
电源电流	ldd	Vin=Vce=3.0V, Vout=Vout×1.1		55	_	uA	3
待机电流	Istb	Vin=3.0V, Vce=0V, Vout=Vout×1.1	_	0	1	uA	3
振荡频率	FOSC	lout=100mA	1020	1200	1380	KHz	1
PFM 开关电流	Ipfm	Vce=Vin, lout=1mA	_	180	_	mA	1
最大占空比	Maxdty	Vce=Vin, Vout=0	100		_	%	4
最小占空比	Mindty	Vce=Vout=Vin	_	_	0	%	4
效率	EFFI	Vce=Vin=2.5V, lout=100mA	_	90	_	%	1
LX SW"H"阻抗	RlxH	Vce=0.5Vin, Vce=0V, IIx=100mA	_	0.5	1.2	Ω	5
LX SW"L"阻抗	RlxL	Vce=0.5Vin, Ilx=100mA	_	0.6	1.4	Ω	_
LX SW"H"漏电流	lleakH	Vin=Vout=5.0V, Vce=0V, Lx=0V	_	0.01	1	uA	6
LX SW"L"漏电流	lleakL	Vin=Vout=5.0V, Vce=0V, Lx=5V	_	0.01	1	uA	6
电流门限	llim	Vin=Vce=5.0V, Vout=0V	_	800	_	mA	7
输出电压温度特性	Vout/ (Vout*⊿topr)	lout=30mA, -40℃≤Topr≤85℃	_	+100	_	ppm/℃	1
CE 高电平	VceH	Vout=0V	0.7	_	Vin	V	8
CE 低电平	VceL	Vout=0V	Vss		0.6	V	8
CE 置高时电流	Iceh	Vin=Vce=5.5V, Vout=0V	-0.1	_	0.1	uA	8
CE 置低时电流	Icel	Vin=5.5V, Vce=0V, Vout=0V	-0.1	_	0.1	uA	8
软启动时间	Tss	Vce=0V∼Vin, lout=1mA	0.5	1.2	3.0	msec	1
锁定时间	Tlat	Vin=Vce=5.0V	1		20	msec	9

ME3101A12 (除特别指出,VIN=3.0V,FOSC=1.2MHz, Cin=4.7uF,CL=10uF,L=3.3uH,Ta=25℃)

参数	符号	测试条件	最小值	典型值	最大值	单位	测试电路
输出电压	Vout	Vce=Vin,lout=30mA	1.176	1.2	1.224	V	1
输入电压	Vin		2	_	6	V	1
最大输出电流	lout.max	VIN=2.5V	500	_	_	mA	1)
欠压锁定电压	Vuvlo	Vce=Vin,Vout=0V, LX 端电压低电平	1	1.4	1.78	V	2
电源电流	ldd	Vin=Vce=3.0V, Vout=Vout×1.1	_	60	120	uA	3
待机电流	Istb	Vin=3.0V, Vce=0V, Vout=Vout×1.1	_	0	1	uA	3
振荡频率	FOSC	lout=100mA	1020	1200	1380	KHz	1)
PFM 开关电流	lpfm	Vce=Vin, lout=1mA	100	140	180	mA	1
最大占空比	Maxdty	Vce=Vin, Vout=0	100	_	_	%	4
最小占空比	Mindty	Vce=Vout=Vin	_	_	0	%	4
效率	EFFI	Vce=Vin=2.5V, lout=100mA	_	90	_	%	1)
LX SW"H"阻抗	RlxH	Vce=0.5Vin, Vce=0V, Ilx=100mA	_	0.5	1.2	Ω	(5)
LX SW"L"阻抗	RlxL	Vce=0.5Vin, IIx=100mA	_	0.6	1.4	Ω	_
LX SW"H"漏电流	lleakH	Vin=Vout=5.0V, Vce=0V, Lx=0V	_	0.01	1	uA	6
LX SW"L"漏电流	lleakL	Vin=Vout=5.0V, Vce=0V, Lx=5V	_	0.01	1	uA	6
电流门限	Ilim	Vin=Vce=5.0V, Vout=0V	600	700	_	mA	7
输出电压温度特性	Vout/ (Vout* ⊿ topr)	lout=30mA,-40°C≤Topr≤85°C	_	+100	_	ppm/℃	1)
CE 高电平	VceH	Vout=0V	0.9	_	Vin	V	8
CE 低电平	VceL	Vout=0V	Vss	_	0.3	V	8
CE 置高时电流	Iceh	Vin=Vce=5.5V, Vout=0V	-0.1	_	0.1	uA	8
CE 置低时电流	Icel	Vin=5.5V, Vce=0V, Vout=0V	-0.1	_	0.1	uA	8
软启动时间	Tss	Vce=0V∼Vin, lout=1mA	0.5	1.0	3.0	msec	1)
锁定时间	Tlat	Vin=Vce=5.0V	1		20	msec	9

ME3101A18 (除特别指出,VIN=3.6V,FOSC=1.2MHz, Cin=4.7uF,CL=10uF,L=3.3uH,Ta=25℃)

III_01017110 (12	1, 13 7,11 m 1,	0.017 1 000-1.2111112, 0111-1.7	u., u_		0.00.17	.u _ 0 =	,
参数	符号	测试条件	最小值	典型值	最大值	单位	测试电路
输出电压	Vout	Vce=Vin,lout=30mA	1.764	1.8	1.836	V	1
输入电压	Vin		2	_	6	V	1)
最大输出电流	lout.max	VIN=3.0V	500	_	_	mA	1
欠压锁定电压	Vuvlo	Vce=Vin,Vout=0V, LX 端电压低电平	1	1.4	1.78	V	2
电源电流	ldd	Vin=Vce=3.6V, Vout=Vout×1.1	_	60	120	uA	3

ME3101 始盟_{电子}

待机电流	Istb	Vin=3.6V, Vce=0V, Vout=Vout×1.1	_	0	1	uA	3
振荡频率	FOSC	lout=100mA	1020	1200	1380	KHz	1)
PFM 开关电流	lpfm	Vce=Vin, lout=1mA	100	140	180	mA	1)
最大占空比	Maxdty	Vce=Vin, Vout=0	100	_	_	%	4
最小占空比	Mindty	Vce=Vout=Vin	_	_	0	%	4
效率	EFFI	Vce=Vin=3.0V, lout=100mA	_	90	_	%	1)
LX SW"H"阻抗	RIxH	Vce=0.5Vin, Vce=0V, Ilx=100mA	_	0.5	1.2	Ω	(5)
LX SW"L"阻抗	RlxL	Vce=0.5Vin, Ilx=100mA	_	0.6	1.4	Ω	_
LX SW"H"漏电流	lleakH	Vin=Vout=5.0V, Vce=0V, Lx=0V	_	0.01	1	uA	6
LX SW"L"漏电流	lleakL	Vin=Vout=5.0V, Vce=0V, Lx=5V	_	0.01	1	uA	6
电流门限	llim	Vin=Vce=5.0V, Vout=0V	600	700	_	mA	7
输出电压温度特性	Vout/ (Vout* ⊿ topr)	lout=30mA,-40°C≤Topr≤85°C	_	+100	_	ppm/℃	1)
CE 高电平	VceH	Vout=0V	0.9	_	Vin	V	8
CE 低电平	VceL	Vout=0V	Vss	_	0.3	V	8
CE 置高时电流	Iceh	Vin=Vce=5.5V, Vout=0V	-0.1	_	0.1	uA	8
CE 置低时电流	Icel	Vin=5.5V, Vce=0V, Vout=0V	-0.1	1	0.1	uA	8
软启动时间	Tss	Vce=0V~Vin, lout=1mA	0.5	1.0	3.0	msec	1)
锁定时间	Tlat	Vin=Vce=5.0V	1	_	20	msec	9

ME3101A33 (除特别指出,VIN=5V, FOSC=1.2MHz, Cin=4.7uF, CL=10uF, L=3.3uH, Ta=25℃)

参数	符号	测试条件	最小值	典型值	最大值	单位	测试电路
输出电压	Vout	Vce=Vin,lout=30mA	3.234	3.3	3.366	V	1)
输入电压	Vin		2	_	6	V	1)
最大输出电流	lout.max	VIN=4.5V	500	_	_	mA	1)
欠压锁定电压	Vuvlo	Vce=Vin,Vout=0V, LX 端电压低电平	1	1.4	1.78	V	2
电源电流	ldd	Vin=Vce=5V, Vout=Voutx1.1	_	60	120	uA	3
待机电流	Istb	Vin=5V, Vce=0V, Vout=Vout×1.1	_	0	1	uA	3
振荡频率	FOSC	lout=100mA	1020	1200	1380	KHz	1)
PFM 开关电流	lpfm	Vce=Vin, lout=1mA	100	140	180	mA	1)
最大占空比	Maxdty	Vce=Vin, Vout=0	100	_	_	%	4
最小占空比	Mindty	Vce=Vout=Vin	_	_	0	%	4
效率	EFFI	Vce=Vin=4.5V, lout=100mA	_	93	_	%	1)
LX SW"H"阻抗	RIxH	Vce=0.5Vin, Vce=0V, Ilx=100mA	_	0.5	1.2	Ω	(5)

ME3101

LX SW"L"阻抗	RlxL	Vce=0.5Vin, Ilx=100mA	_	0.6	1.4	Ω	
LX SW"H"漏电流	lleakH	Vin=Vout=5.0V, Vce=0V, Lx=0V	_	0.01	1	uA	6
LX SW"L"漏电流	lleakL	Vin=Vout=5.0V, Vce=0V, Lx=5V	_	0.01	1	uA	6
电流门限	llim	Vin=Vce=5.0V, Vout=0V	600	700	_	mA	7
输出电压温度特性	Vout/ (Vout*⊿topr)	lout=30mA,-40℃≤Topr≤85℃	_	±100	_	ppm/℃	1)
CE 高电平	VceH	Vout=0V	1.1	_	Vin	V	8
CE 低电平	VceL	Vout=0V	Vss	_	0.3	V	8
CE 置高时电流	Iceh	Vin=Vce=5.5V, Vout=0V	-0.1	_	0.1	uA	8
CE 置低时电流	Icel	Vin=5.5V, Vce=0V, Vout=0V	-0.1	_	0.1	uA	8
软启动时间	Tss	Vce=0V~Vin, lout=1mA	0.5	1.0	3.0	msec	1)
锁定时间	Tlat	Vin=Vce=5.0V	1	_	20	msec	9

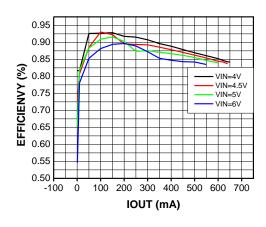
使用注意事项

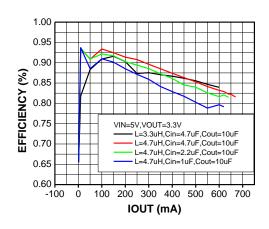
- 1. 推荐使用陶瓷电容以获得更小的纹波。
- 2. PWM工作状态下, 当输入输出压差比较大时, 会产生窄脉冲, 可能导致部分脉冲跳过。
- 3. 输入输出压差比较小、负载比较大时,将会输出很宽的脉冲,也可能引发部分脉冲跳过。
- 4. 芯片内部已经设定了的峰值电流的最大值。当输入输出电压压差比较大、负载电流也比较高时,电感峰值电流可能会超过限定的最大电流,这时限流电路开始工作,可能会导致输出电压的不稳定。这时可适当调节电感值来保证电感峰值电流不超过限定值。按以下公式计算:

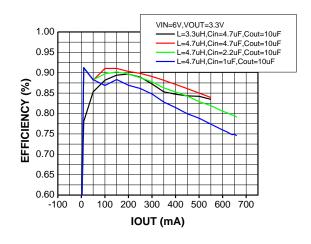
Ipk = (VIN-VOUT) * On Duty / (2 * L * FOSC) + IOUT

L:电感值

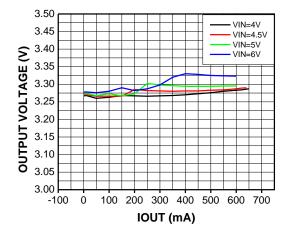
FOSC:振荡频率

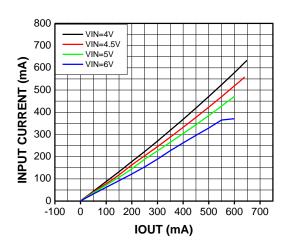

- 5. 当输入电压低于2.4V时,因为驱动管导通电阻的影响,最大限流值可能会有所降低。
- 6. 为了防止芯片受噪声或者高频毛刺的影响, PCB布版时, 电容离芯片要尽可能的近。
- 7. 芯片使用电压低于推荐的电压范围时,芯片工作可能会不稳定。
- 8. 芯片工作在高温的环境下时,驱动管的漏电流会变大,空载输出电压可能会上升至输入电压。


V06 www.microne.com.cn Page 7 of 13

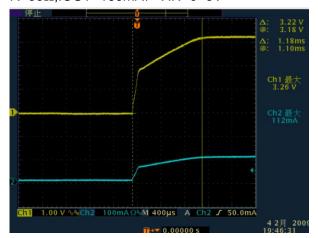


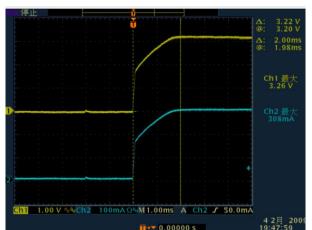
典型性能参数


(1) 效率与负载的关系曲线

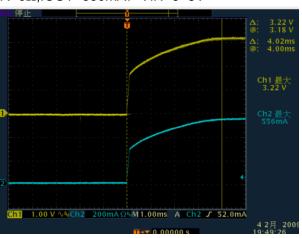


(2) 输出电压随输出电流的变化

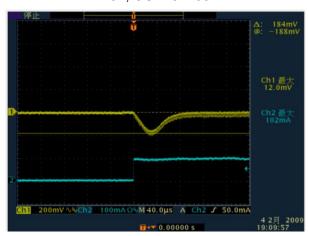

(3) 输入电流随输出电流的变化

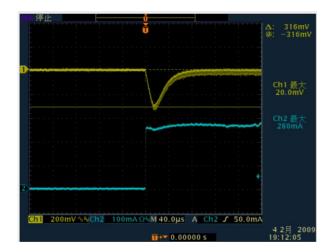


(4) 线性瞬态响应时间

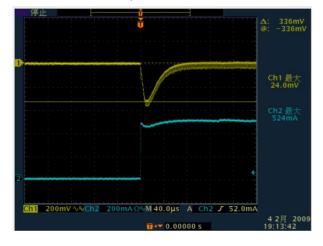

R=33 Ω ,IOUT=100mA, VIN=0~5V

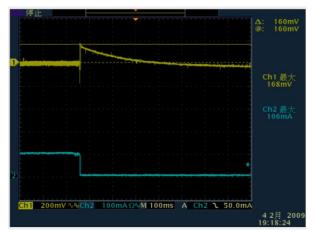
R=11 Ω ,IOUT=300mA, VIN=0~5V

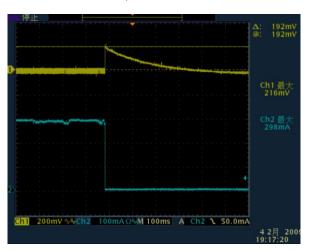

R=6 Ω ,IOUT=550mA, VIN=0~5V

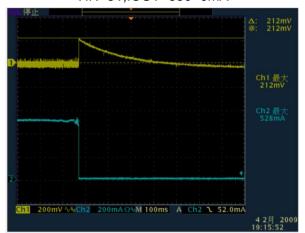


(5) 负载响应

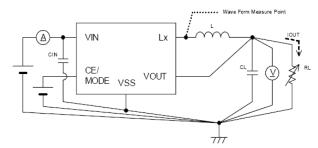

VIN=5V,IOUT=0~100mA

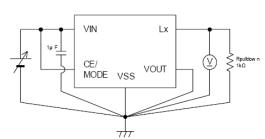

VIN=5V,IOUT=0~300mA


VIN=5V,IOUT=0~550mA

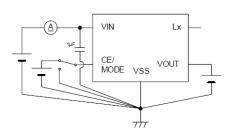

VIN=5V,IOUT=100~0mA

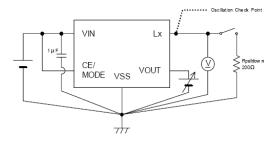
VIN=5V,IOUT=300~0mA


VIN=5V,IOUT=550~0mA

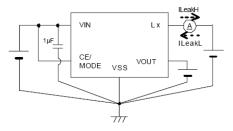


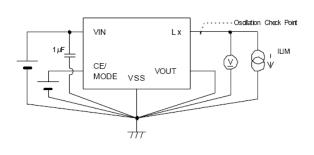
测试电路

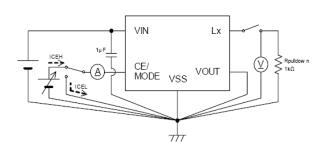


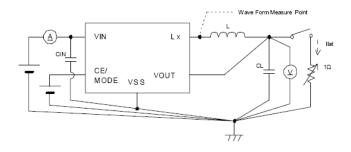


Circuit 3

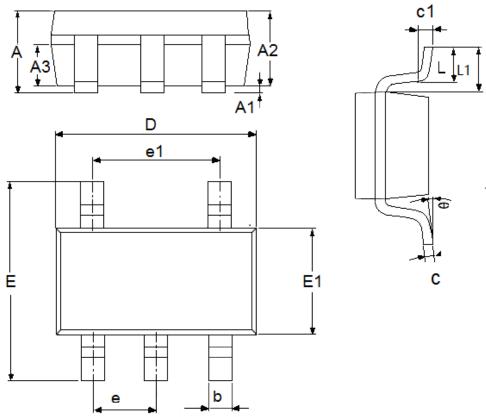

Circuit 4


Circuit (5)


Circuit 6


Circuit ⑦

Circuit ®


Circuit 9

封装信息

● 封装类型: SOT23-5

← ₩	尺寸((mm)	尺寸(Inch)	
参数	最小值	最大值	最小值	最大值	
А	1.05	1.45	0.0413	0.0571	
A1	0	0.15	0.0000	0.0059	
A2	0.9	1.3	0.0354	0.0512	
A3	0.6	0.7	0.0236	0.0276	
b	0.25	0.5	0.0098	0.0197	
С	0.1	0.23	0.0039	0.0091	
D	2.82	3.05	0.1110	0.1201	
e1	1.9(TYP)	0.0748(TYP)		
Е	2.6	3.05	0.1024	0.1201	
E1	1.5	1.75	0.0512	0.0689	
е	0.95	(TYP)	0.0374	(TYP)	
L	0.25	0.6	0.0098	0.0236	
L1	0.59	(TYP)	0.0232(TYP)		
θ	0	8°	0.0000	8°	
c1	0.2(TYP)	0.0079	O(TYP)	

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其 责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率 发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社 会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安 全设计。

V06 www.microne.com.cn Page 13 of 13