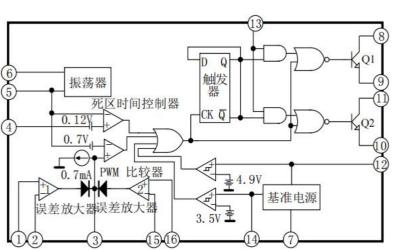


概述

XBLW TL494 是一块开关式脉冲宽度调控电路,主要用于开关式电源控制。 采用 DIP16、SOP16 封装形式。

主要特点

- 完善的脉宽调控电路。
- 含主动或从动振荡器。
- 含双误差放大器。
- 含 5V 参考电源。
- 死区控制可调。
- 独立的输出晶体管(源流或陷流 200mA)。
- 输出控制方式采用推挽式或单端式。



订购信息

产品型号	封装	丝印	包装	包装数量
XBLW TL494CN	DIP-16	TL494CN	管装	1000只/盒
XBLW TL494CDTR	SOP-16	TL494C	编带	2500只/盘

引脚图及功能框图

引出端功能说明

引出端序号	功能	符号	引出端序号	功能	符号
1	正相输入	INPP	9	发射极输出(1)	E1
2	反相输入	INNP	10	发射极输出(2)	E2
3	PWM反馈比较输入	INfc	11	集电极电压	C2
4	死区时间控制	DTC	12	电源电压	Vcc
5	振荡频率调整电容	CT	13	输出控制	OUTcon
6	振荡频率调整电阻	RT	14	基准电压输出	Vref
7	地	GND	15	反相输入	INPP
8	集电极电压	C1	16	正相输入	INNP

极限值(绝对最大额定值,若无其它规定, Tamb=25℃)

42 M. H. Th.	<i>⁄⁄⁄⁄</i> □	数化	74 (Z-	
参数名称	符号	最小	最大	单位
电源电压	Vcc	7	40	V
集电极输出电压	Vc1;Vc2		40	V
集电极输出电流(单一晶体管)	Ic1;Ic2		200	mA
放大器输入电压	Vin	-0.3	Vcc-2	V
功耗(Tamb≤45℃)	PD		500	mW
工作环境温度	Tamb	0	70	°C
贮存温度	Tstg	-55	150	°C

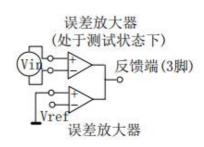
推荐工作条件

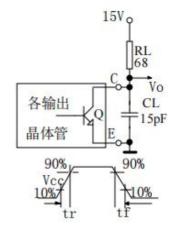
全 粉 <i>权 和</i>	bb □		34 D.		
参数名称	符号	最小	典型	最大	单位
电源电压	Vcc	7.0	15	40	V
集电极输出电压	Vc1; Vc2		30	40	V
集电极输出电流 (单一晶体管)	Ic1; Ic2			200	mA
放大器输入电压	Vin	-0.3		Vcc-2.0	V
反馈电流	Ifb			0.3	mA
基准端输出电流	Iref			10	mA
定时电阻	RT	1.8	30	500	kΩ
定时电容	CT	0.00047	0.001	10	μF
振荡频率	fosc	1.0	40	200	kHz

电特性(若无其它规定,Vcc=15V,fosc=10kHz,对于典型值 Tamb=25℃,对于最小、最大值 Tamb 为工作环境温度。)

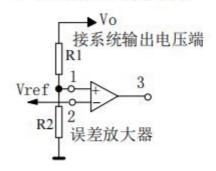
	/cc=15V, fosc=10kHz, 对于典型值 Tam			规范值		单
特性 特性	测试条件	符号	最小	典型	最大	· 位
基准部分						
基准电压	Io=1.0mA	Vref	4.75	5.0	5.25	V
基准电压随温度变化值	ΔTamb从MIN到MAX	ΔVref/ΔT		1.3	2.6	%
电压线性度	Vcc=7.0V~40V	Reg line		2.0	25	mV
负载调整率	Io=1.0mA~10mA	Reg load		2.0	15	mV
短路输出电流	Vref=0V, Tamb=25℃	Isc		32		mA
输出部分						
集电极漏电流	Vcc=40V; Vce=40V	Ic(off)		2.0	100	μA
发射极漏电流	Vcc=40V; Vc=40V; Ve=0V	Ie(off)			-100	μA
作山松 尖针松焰和压	共发射极: Ve=0V; Ic=200m/	Vc(sat)		1.1	1.3	V
集电极—发射极饱和压降	射极跟随: Vc=15V; Ie=- 200mA	Ve(sat)		1.5	2.5	V
输出控制脚电流	Voc=Vref	ІОСН		0.2	3.5	mA
松山市区上东时间	共发射极:测试图3	- Tr		100	200	ns
输出电压上升时间	射极跟随:测试图4	11		100	200	ns
输出电压下降时间	共发射极:测试图3	Tf		25	100	ns
柳山电压下库明吗	射极跟随:测试图4	11		40	100	ns
误差放大器部分			T			
输入失调电压	Vo (pin3) =2.5V	Vio		2.0	10	mV
输入失调电流	Vo (pin3) =2.5V	lio		5.0	250	nA
输入偏置电流	Vo (pin3) = 2.5V	IIB		0.1	1.0	μA
输入共模电压范围	Vcc=7.0V~40V	VICR	-0.3		Vcc- 2.0	V
开环电压增益	Vo=0.5V~3.5V; RL=2.0kΩ; ΔVo=3.0V	GVOL	70	95		dB
单位增益带宽	Vo=0.5V \sim 3.5V; RL=2.0kΩ	fc		800		kHz
共模抑制比	Vcc=40V	CMR R	65	90		dB
输出吸电流	Vo (pin3)=0.7V	Io-	0.3	0.7		mA
输出源电流	Vo (pin3) =3.5V	Io+	-2.0	-4.0		mA
PWM 比较器部分(测记	线路图见2)		1	1		1
输入阈值电压	零占空比	VTH		4	4.5	V
输入吸电流	V (pin3)=0.7V	II-	0.3	0.7		mA
死区控制部分 (测试线)	路图见2)					

输入偏置电流		Vin=0V~5.25V	IIB(DT)		-2.0	-10	μA
最大占空比(每路)	输出	Vin=0V; RT=12kΩ;CT=0.1μF	DCmax		45		%
输入阈值电压 (pin	14)	零占空比 最大占空比	VTH	0	3	3.3	V
振荡器部分							
频率		RT=12kΩ;CT=0.01μF	fosc		10		kHz
标准频偏		RT=30k Ω ;CT=0.001 μ F	Δfosc		3.0		%
频率随电压变化量		Vcc=7.0V~40V	Δfosc/Δ V		0.1		%
频率随温度变化量		RT=12kΩ;CT=0.01μF; Tamb=Tlow~Thigh	Δfosc/ΔT			12	%
起始控制							
低电流输入	V (1	pin3)=0.4V	ISTL		-25	-200	μA
高电流输入	~	pin13) =2.4V pin13) =Vref	ISTH		25 75	200	μA
整体部分							
待机电流(6 脚为	Vcc	=15V			6	10	
参 考电压,其余 输入及 输出均开 路)	Vcc	=40V	Icc		9	15	mA
平均电源电流(测 试线路图见2)	RT=	=15V; =12kΩ;CT=0.01μF; V 14)=2.0V			7.5		mA

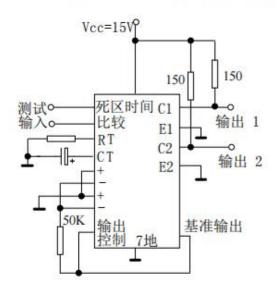




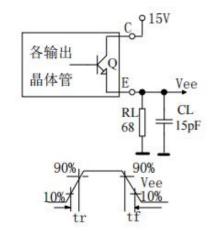
测试原理图

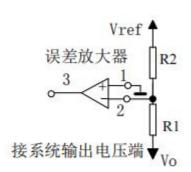

1. 误差放大器特性

3. 共射极连接测试电路及波形



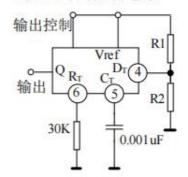
5. 误差放大器传感技术



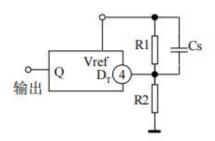

正输出电压 Vo=Vref (1+R1/R2)

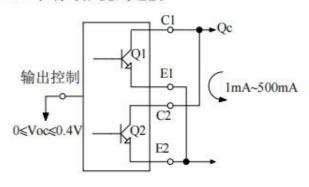
2. 死区时间及反馈控制测试电路

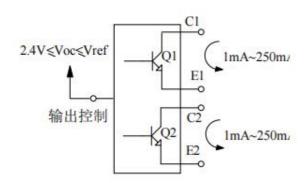
4. E 极跟随连接测试电路及波形



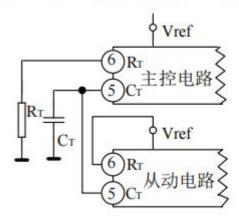
负输出电压 Vo=Vref*R1/R2




6. 死区时间控制电路

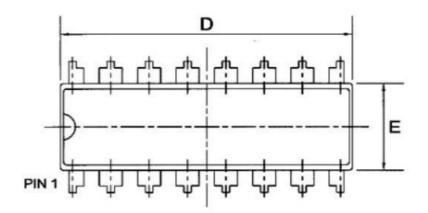


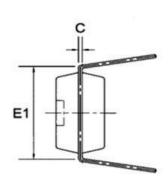
7. 软起动电路

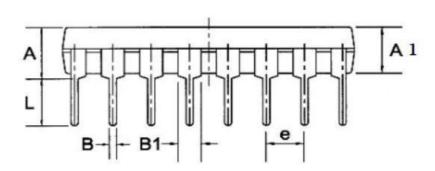


8. 单端与推挽式连接

9. 两个或两个以上的从动控制电路

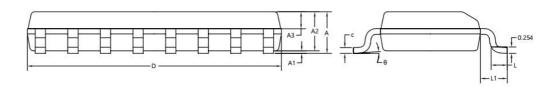


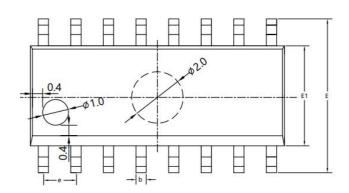




<mark>封装信息</mark>

DIP16


4	Dimen	sions in Mill	imeters
Symbol	Min	Nom	Max
Α	-	(1444)	4.31
A1	3.15	3.30	3.65
В		0.50	
B1		1.6	
С	1.77	0.27	
D	19.00	19.20	19.60
Е	6.20	6.50	6.60
E1		8.0	
e	52	2.3	
L	3.00	3.20	3.60



SOP16

CVANDOL		MILLIMETER		
SYMBOL	MIN	NOM	MAX	
A	1.50	1.60	1.70	
A1	0.10	0.15	0.25	
A2	1.40	1.45	1.50	
А3	0.60	0.65	0.70	
b	0.30	0.40	0.50	
c	0.15	0.20	0.25	
D	9.80	9.90	10.00	
E	5.80	6.00	6.20	
E1	3.85	3.90	3.95	
e	·	1.27BSC		
L	0.50	0.60	0.70	
L1		1.05BSC		
θ	0°	4°	8°	

声明

- ◆ 深圳芯伯乐电子有限公司保留产品说明书的更改权, 恕不另行通知! 客户在下单前, 需确认获取的资料是否为最新版本,并验证相关信息的完整性。
- ◆ 任何半导体产品在特定的条件下都有失效或发生故障的可能,买方有责任在使用深圳芯伯乐电子有限公司产品进行系统设计和整机制造时遵守安全标准, 并采取相应的安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- ◆ 产品性能提升永无止境,深圳芯伯乐电子有限公司将竭诚为客户提供性能更佳、质量更优的集成电路产品。